• 제목/요약/키워드: Spatio-temporal features

검색결과 81건 처리시간 0.025초

유적지 투어 지원을 위한 증강 현실기반 프레임워크 (Augmented Reality Framework for Archeological Site Tours)

  • 김은석;우운택
    • 한국HCI학회논문지
    • /
    • 제10권2호
    • /
    • pp.35-43
    • /
    • 2015
  • 사용자 경험 증대를 위해 증강 현실 기술에 대한 활용이 증가하게 됨에 따라, 다양한 증강 현실 어플리케이션들이 문화유산 영역 대상으로 개발되어왔다. 그간 문화유산 영역에서의 증강 현실 기술의 활용이 극적인 진보를 이루었음에도 불구하고, 단순 증강 방법은 증대된 사용자 경험 제공에 걸림돌이 되었으며, 이를 해결하기 위한 효과적인 증강현실의 특성을 반영한 증강 현실 체험 기법에 대한 연구는 부족한 실정이다. 또한 저작 프레임워크의 부재로 인한 일회성에 그치는 콘텐츠 개발은 지속적인 서비스에 핵심이 되는 콘텐츠 생태계 구축에 저해하고 있다. 이러한 문제들을 해결하기 위하여, 우리는 기존의 사물 중심의 증강 방식을 확장한 공간 주도의 증강현실 체험 기법인 스페이스텔링(Spacetelling) 기법과, 이에 필요한 시공간 연계 콘텐츠를 생성하고 지속적인 서비스를 지원하기 위한 스토리스케이프 저작 프레임워크, 그리고 이를 포함한 유적지 투어 지원을 위한 시스템 프레임워크를 제안하였다. 본 제안의 실제적인 구현 가능성을 검증하기 위하여, 현재 진행 중인 K-Culture Time Machine 프로젝트에서의 구현 사례를 제시하였다. 본 연구의 제안을 통하여 지속 가능하면서도, 향상된 사용자 경험을 제공하는 문화유산 증강현실 어플리케이션을 개발할 수 있을 것으로 전망한다.

수화 패턴 인식을 위한 2단계 신경망 모델 (Two-Stage Neural Networks for Sign Language Pattern Recognition)

  • 김호준
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.319-327
    • /
    • 2012
  • 본 논문에서는 착용식 추적장치나 표식 등의 보조 도구를 사용하지 않는 환경의 동영상 데이터로부터 수화 패턴을 인식하는 방법론에 관하여 고찰한다. 시스템 설계 및 구현에 관한 주제로서 특징점의 추출기법, 특징데이터의 표현기법 및 패턴 분류기법에 관한 방법론을 제시하고 그 유용성을 고찰한다. 일련의 동영상으로 표현되는 수화패턴에 대하여 특징점의 공간적 위치에 대한 변이 뿐만 아니라 시간차원의 변화를 고려한 특징데이터의 표현방법을 제시하며, 방대한 데이터에 의한 분류기의 크기 문제와 계산량의 문제를 개선하기 위하여 효과적으로 특징수를 줄일 수 있는 특징추출 방법을 소개한다. 패턴 분류과정에서 점진적 학습(incremental learning)이 가능한 신경망 모델을 제시하고 그 동작특성 및 학습효과를 분석한다. 또한 학습된 분류모델로부터 특징과 패턴 클래스 간의 상대적 연관성 척도를 정의하고, 이로부터 효과적인 특징을 선별하여 성능저하 없이 분류기의 규모를 최적화 할 수 있음을 보인다. 제안된 내용에 대하여 여섯 가지 수화패턴을 대상으로 적용한 실험을 통하여 유용성을 평가한다.

Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng

  • Hong, Jeongeui;Kim, Hogyum;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.306-314
    • /
    • 2018
  • Korean ginseng (Panax ginseng) has long been cultivated as an important economic medicinal plant. Owing to the seasonal and long-term agricultural cultivation methods of Korean ginseng, they are always vulnerable to various environmental stress conditions. ABSCISIC ACID (ABA) is an essential plant hormone associated with seed development and diverse abiotic stress responses including drought, cold and salinity stress. By modulating ABA responses, plants can regulate their immune responses and growth patterns to increase their ability to tolerate stress. With recent advances in genome sequencing technology, we first reported the functional features of genes related to canonical ABA signaling pathway in P. ginseng genome. Based on the protein sequences and functional genomic analysis of Arabidopsis thaliana, the ABA related genes were successfully identified. Our functional genomic characterizations clearly showed that the ABA signaling related genes consisting the ABA receptor proteins (PgPYLs), kinase family (PgSnRKs) and transcription factors (PgABFs, PgABI3s and PgABI5s) were evolutionary conserved in the P. ginseng genome. We confirmed that overexpressing ABA related genes of P. ginseng completely restored the ABA responses and stress tolerance in ABA defective Arabidopsis mutants. Finally, tissue and age specific spatio-temporal expression patterns of the identified ABA-related genes in P. ginseng tissues were also classified using various available RNA sequencing data. This study provides ABA signal transduction related genes and their functional genomic information related to the growth and development of Korean ginseng. Additionally, the results of this study could be useful in the breeding or artificial selection of ginseng which is resistant to various stresses.

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.11-19
    • /
    • 2021
  • 이상 객체란 일반적이고 평범한 행동을 취하는 객체가 아닌 비정상적이고 흔하지 않은 행동을 하여 관찰이나 감시·감독을 필요로 하는 사람, 물체, 기계 장치 등을 뜻한다. 이를 사람의 지속적인 개입 없이 인공지능 알고리즘을 통해 탐지하기 위해서 광학 흐름 기법을 활용한 시간적 특징의 특이도를 관찰하는 방법이 많이 활용되고 있으며, 이 기법은 정해진 표현 범위가 없는 수많은 이상 행동을 식별하기에 적합하다. 본 연구에서는 생성적 적대 신경망(Generative Adversarial Network, GAN)으로 입력 영상 프레임을 광학 흐름 영상으로 변환하는 알고리즘을 학습시켜 비정상적인 상황을 식별한다. 특히 생성적 적대 신경망 모델이 입력 영상에 대한 중요한 특징 정보를 학습하고, 그 외 불필요한 이상치를 제외시키기 위한 전처리 과정과 학습 후 테스트 데이터셋에서 식별 정확도를 높이기 위한 후처리 과정을 고도화하여 전체적인 모델의 이상 행동 식별 성능을 향상시키는 기법을 제안한다. 이상 행동을 탐지하기 위한 학습 데이터셋으로 UCSD Pedestrian, UMN Unusual Crowd Activity를 활용하였으며, UCSD Ped2 데이터셋에서 프레임 레벨 AUC 0.9450, EER 0.1317의 수치를 보이며 이전 연구에서 도출된 성능 지표 대비 성능 향상이 확인되었다.

3D-CNN에서 동적 손 제스처의 시공간적 특징이 학습 정확성에 미치는 영향 (Effects of Spatio-temporal Features of Dynamic Hand Gestures on Learning Accuracy in 3D-CNN)

  • 정영지
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.145-151
    • /
    • 2023
  • 3D-CNN은 시계열 데이터 학습을 위한 딥 러닝 기법 중 하나이다. 이러한 3차원 학습은 많은 매개변수를 생성할 수 있으므로 고성능 기계학습이 필요하거나 학습 속도에 커다란 영향을 미칠 수 있다. 본 연구에서는 손의 동적인 제스처 동작을 시공간적으로 학습할 때, 3D-CNN 모델의 구조적 변화 없이 입력 영상 데이터의 시공간적 변화에 따른 학습 정확성을 분석함으로써, 3D-CNN을 이용한 동적 제스처 학습의 효율성을 높이기 위한 입력 영상 데이터의 최적 조건을 찾고자 한다. 첫 번째로 동적 손 제스처 영상 데이터에서 동적 이미지 프레임의 학습구간을 설정함으로써 제스처 동작간 시간 비율을 조정한다. 둘째로는 클래스간 2차원 교차 상관 분석을 통해 영상 데이터의 이미지 프레임간 유사도를 측정하여 정규화 함으로써 프레임간 평균값을 얻고 학습 정확성을 분석한다. 이러한 분석을 통하여, 동적 손 제스처의 3D-CNN 딥 러닝을 위한 입력 영상 데이터를 효과적으로 선택하는 두 가지 방법을 제안한다. 실험 결과는 영상 데이터 프레임의 학습구간과 클래스간 이미지 프레임간 유사도가 학습 모델의 정확성에 영향을 미칠 수 있음을 보여준다.

준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘 (Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild)

  • 김대하;송병철
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.351-360
    • /
    • 2018
  • 인간 감정 인식은 컴퓨터 비전 및 인공 지능 영역에서 지속적인 관심을 받는 연구 주제이다. 본 논문에서는 wild 환경에서 이미지, 얼굴 특징점 및 음성신호로 구성된 multi-modal 신호를 기반으로 여러 신경망을 통해 인간의 감정을 분류하는 방법을 제안한다. 제안 방법은 다음과 같은 특징을 갖는다. 첫째, multi task learning과 비디오의 시공간 특성을 이용한 준 감독 학습을 사용함으로써 영상 기반 네트워크의 학습 성능을 크게 향상시켰다. 둘째, 얼굴의 1 차원 랜드 마크 정보를 2 차원 영상으로 변환하는 모델을 새로 제안하였고, 이를 바탕으로 한 CNN-LSTM 네트워크를 제안하여 감정 인식을 향상시켰다. 셋째, 특정 감정에 오디오 신호가 매우 효과적이라는 관측을 기반으로 특정 감정에 robust한 오디오 심층 학습 메커니즘을 제안한다. 마지막으로 소위 적응적 감정 융합 (emotion adaptive fusion)을 적용하여 여러 네트워크의 시너지 효과를 극대화한다. 제안 네트워크는 기존의 지도 학습과 반 지도학습 네트워크를 적절히 융합하여 감정 분류 성능을 향상시켰다. EmotiW2017 대회에서 주어진 테스트 셋에 대한 5번째 시도에서, 제안 방법은 57.12 %의 분류 정확도를 달성하였다.

해양환경 공간분포 패턴 분석을 위한 공간자기상관 적용 연구 - 광양만을 사례 지역으로 - (Application of Spatial Autocorrelation for the Spatial Distribution Pattern Analysis of Marine Environment - Case of Gwangyang Bay -)

  • 최현우;김계현;이철용
    • 한국지리정보학회지
    • /
    • 제10권4호
    • /
    • pp.60-74
    • /
    • 2007
  • 해양환경의 시공간적 분포 패턴을 정량적으로 분석하기 위해 남해 광양만 해양환경 관측 자료를 이용하여 글로벌 및 국지적 공간자기상관 통계를 적용하였다. 연구지역 전체의 해양환경 분포 패턴을 이해하기 위해 Moran's I, General G와 같은 글로벌 공간자기상관 지수를 사용하였으며, 대상 피쳐(feature)와 이웃 피쳐들과의 유사성 정도를 측정하고 hot spot 및 cold spot을 탐지하기 위해 국지적 Moran's I ($I_i$), $G_i{^*}$와 같은 LISA(local indicators of spatial association)를 사용하였고, 공간 군집 패턴의 신뢰성은 Z-score를 통한 통계적 유의성 검증을 수행하였다. 공간 통계 결과를 통해 년 중 해양환경 공간분포 패턴의 변화를 정량적으로 알 수 있었는데, 일반 해양수질, 영양염, 클로로필 및 식물플랑크톤은 여름철에 강한 군집 패턴을 보였다. 글로벌 지수에서 강한 군집 패턴을 보였을 때 속성 값의 공간적인 변화가 심한 음적 $I_i$ 값을 가지는 전선지역이 탐지되었다. 또한, 글로벌 지수에서 임의적 패턴을 보였을 때 국지적 지수인 $G_i{^*}$에서는 좁은 지역에서 hot spot과(또는) cold spot이 탐지되었다. 따라서 글로벌 지수는 연구 지역 전체 군집 패턴의 강도와 시계열적 변화 과정 탐지에, 국지적 지수를 통해서는 hot spot과 cold spot 위치 추적에 유용함을 알 수 있었다. 해양환경 공간분포 패턴과 군집 특성을 정량화는 것은 해양환경을 보다 깊이 이해할 수 있도록 할 뿐 아니라, 패턴의 원인을 찾는데도 중요한 역할을 할 것이다.

  • PDF

Doppler Shifts of the $H{\alpha}$ Line and the Ca II 854.2 nm Line in a Quiet Region of the Sun Observed with the FISS/NST

  • 채종철;박형민;양희수;박영득;조경석;안광수
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.113.1-113.1
    • /
    • 2012
  • The characteristics of Doppler shifts in a quiet region of the Sun are investigated by comparing between the $H{\alpha}$ line and the Caii infrared line at 854.2 nm. A small area of $16^{\prime\prime}{\times}40^{\prime\prime}$ was observed for about half an hour with the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) at Big Bear Solar Observatory. The observed area contains a network region and an internetwork region, and identified in the network region are $H{\alpha}$ fibrils, Caii fibrils and bright points. We infer the Doppler velocity from each line profile at a point with the lambdameter method as a function of half wavelength separation ${\Delta}{\lambda}$. It is confirmed that the bisector of the spatially-averaged Caii line profile has an inverse C-shape of with a significant peak redshift of +1.8 km/s. In contrast, the bisector of the spatially-averaged $H{\alpha}$ line profile has a different shape; it is almost vertically straight or, if not, has a C-shape with a small peak blueshift of -0.5 km/s. In both the lines, the bisectors of bright network points are much different from those of other features in that they are significantly redshifted not only at the line centers, but also at the wings. We also find that the spatio-temporal fluctuation of Doppler shift inferred from the Caii line is correlated with those of the $H{\alpha}$ line. The strongest correlation occurs in the internework region, and when the inner wings rather than the line centers are used to determine Doppler shift. In this region, the RMS value of Doppler shift fluctuation is the largest at the line center, and monotonically decreases with ${\Delta}{\lambda}$. We discuss the physical implications of our results on the formation of the $H{\alpha}$ line and Caii 854.2 nm line in the quiet region chromosphere.

  • PDF

기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측 (WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models)

  • 김수빈;이재성;김경태
    • 한국해양학회지:바다
    • /
    • 제27권2호
    • /
    • pp.71-86
    • /
    • 2022
  • 해양환경을 정량적으로 평가하기 위해 수질평가지수(water quality index, WQI)가 사용되고 있다. 우리나라는 해양수산부고시 해양환경기준에 따라 WQI를 5개 등급으로 구분하여 수질을 평가한다. 하지만, 방대한 수질 조사 자료에 대한 WQI 계산은 복잡하고 많은 시간이 요구된다. 이 연구는 기존의 조사된 수질 자료를 활용하여 WQI 등급을 예측할 수 있는 기계학습(machine learning, ML) 기반의 모델을 제안하고자 한다. 특별관리해역인 시화호를 모델링 지역으로 선정하였다. AdaBoost와 TPOT 알고리즘을 모델 훈련을 위해 사용하였으며, 분류 모델 평가 지표(정확도, 정밀도, F1, Log loss)로 모델 성능을 평가하였다. 훈련하기 전, 각 알고리즘 모델의 최적 입력자료 조합을 탐색하기 위해 변수 중요도와 민감도 분석을 수행하였다. 그 결과 저층 용존산소(dissolved oxygen, DO)는 모델의 성능에서 가장 중요한 인자였다. 반면, 표층 용존무기질소(dissolved inorganic nitrogen, DIN)와 표층 용존무기인(dissolved inorganic phosphorus, DIP)은 상대적으로 영향이 적었다. 한편, 최적 모델의 시공간적 민감도와 WQI 등급 별 민감도를 비교한 결과 각 조사 정점 및 시기, 등급 별 모델의 예측 성능이 상이하였다. 결론적으로 TPOT 알고리즘이 모든 입력자료 조합에서 성능이 더 우수하여 충분한 자료로 훈련된 최적 모델은 새로운 수질 조사 자료의 WQI 등급을 정확하게 분류할 수 있을 거라 판단된다.

딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰 (Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods)

  • 고원준
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.137-142
    • /
    • 2024
  • 최근, 의료 데이터 표현 분야에서 딥러닝 방법들이 사실상의 표준으로 자리잡고 있다. 하지만, 딥러닝 기술은 내재적으로 많은 양의 학습 데이터를 필요로 하므로 대규모의 데이터를 확보하기 쉽지 않은 의료 분야에서는 직접적인 적용이 어려운 실정이다. 특히 뇌신호 모달리티의 경우, 변동성이 크기 때문에 여전히 데이터 부족 문제를 가진다. 이에, 최근 연구에서는 뇌신호의 시간-공간-주파수 특징을 적절하게 추출할 수 있는 딥 뉴럴 네트워크 구조를 설계하거나, 혹은 자가-지도 학습 방법을 도입하여 뇌신호의 신경생리학적 특징을 미리 학습하도록 한다. 본 논문에서는, 최근 각광받는 기술인 뇌-컴퓨터 인터페이스 및 피험자 상태 예측 등의 관점에서 소규모데이터를 다루기 위해 적용되는 방법론에 대한 분석 및 향후 기술 방향성을 제시한다. 먼저 현재 제안되고 있는 뇌신호 표현을 위한 딥 뉴럴 네트워크 구조에 대해 분석한다. 또한 뇌신호의 특성을 잘 학습하기 위한 자가-지도 학습 방법론을 분석한다. 끝으로, 딥러닝 기반 뇌신호 분석을 위한 중요 시사점 및 방향성에 관하여 논한다.