• Title/Summary/Keyword: Spatio-Temporal Correlation

Search Result 115, Processing Time 0.028 seconds

Error Concealment Algorithm using Spatio-Temporal Correlation (Spatio-Temporal Correlation을 이용한 동영상 오류 은닉 알고리즘)

  • Lee, Woo-Chan;Seo, Dong-Cheul;Kim, Yong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2113-2115
    • /
    • 2006
  • This paper proposes a spatio-temporal correlation algorithm that takes advantage of the spatial and temporal correlations in video streams for error concealment. The spatio-temporal correlation algorithm sets the neighborhood area of the damaged part as a reference window, then finds the area that best matches the reference window in the previous frame. The best-matched area in the previous frame replaces the damaged part in the current frame. The results of ten variations of the proposed algorithm are compared with conventional error concealment methods. These methods include the ones applicable to P-frames as well as I-frames. The comparison results show that the proposed algorithm is very efficient for l-frame error concealment with a large motion between frames.

  • PDF

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images (입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향)

  • Park, Soyeon;Na, Sang-il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.999-1011
    • /
    • 2021
  • In spatio-temporal fusion aiming at predicting images with both high spatial and temporal resolutionsfrom multi-sensor images, the radiometric inconsistency between input multi-sensor images may affect prediction performance. This study investigates the effect of radiometric correction, which compensate different spectral responses of multi-sensor satellite images, on the spatio-temporal fusion results. The effect of relative radiometric correction of input images was quantitatively analyzed through the case studies using Sentinel-2, PlanetScope, and RapidEye images obtained from two croplands. Prediction performance was improved when radiometrically corrected multi-sensor images were used asinput. In particular, the improvement in prediction performance wassubstantial when the correlation between input images was relatively low. Prediction performance could be improved by transforming multi-sensor images with different spectral responses into images with similar spectral responses and high correlation. These results indicate that radiometric correction is required to improve prediction performance in spatio-temporal fusion of multi-sensor satellite images with low correlation.

An Efficient Event Detection Algorithm using Spatio-Temporal Correlation in Surveillance Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 시공간 연관성를 이용한 효율적인 이벤트 탐지 기법)

  • Yeo, Myung-Ho;Kim, Yong-Hyun;Kim, Hun-Kyu;Lee, Noh-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.913-919
    • /
    • 2011
  • In this paper, we present a new efficient event detection algorithm for sensor networks with faults. We focus on multi-attributed events, which are sets of data points that correspond to interesting or unusual patterns in the underlying phenomenon that the network monitors. Conventional algorithms cannot detect some events because they treat only their own sensor readings which can be affected easily by environmental or physical problem. Our approach exploits spatio-temporal correlation of sensor readings. Sensor nodes exchange a fault-tolerant code encoded their own readings with neighbors, organize virtual sensor readings which have spatio-temporal correlation, and determine a result for multi-attributed events from them. In the result, our proposed algorithm provides improvement of detecting multi-attributed events and reduces the number of false-negatives due to negative environmental effects.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Spatio-temporal Distribution of Sand Crab Ovalipes punctatus Larvae in the Southern Sea of Korea (한국 남부 해역에 출현하는 깨다시꽃게(Ovalipes punctatus) 유생의 시·공간적 분포)

  • Hyeon Gyu Lee;Hwan-Sung Ji;Seung Jong Lee;Youn Hee Choi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.558-568
    • /
    • 2023
  • The spatio-temporal distribution of the sand crab Ovalipes punctatus larvae was investigated in the Korean waters in 2019. Sea surface temperature (SST) was the lowest in February and highest in September. Sea surface salinity (SSS) was the lowest in September and highest in March. Further, sea surface chlorophyll a (SSC) was the highest in September. Larvae were distributed in the South Sea and coastal area of Jeju Island from April to June, and the abundance was the highest in May. The spatio-temporal distribution analysis suggested that larval groups showed a tendency to be dispersed over a wider area as the larvae developed, due to the increase in their swimming ability. The correlation analysis between environmental factors and larval density suggested that larvae appeared in the SST range 11.8-20.9℃ and SSS range 31.5-35.3 psu. The Megalopal stage appeared in a wider range of SST and SSS than other larval stages, possibly due to the increased environmental tolerance before settlement. Results of redundancy analysis (RDA) and Spearman's rank correlation analysis between the larval density by developmental stages and the environmental factors suggested that SST showed a positive correlation and SSC showed a negative correlation in the later stage.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Future Weather Generation with Spatio-Temporal Correlation for the Four Major River Basins in South Korea (시공간 상관성을 고려한 일기산출기 모형을 이용한 4대강 유역별 미래 일기 변수 산출)

  • Lee, Dong-Hwan;Lee, Jae-Yong;Oh, Hee-Seok;Lee, Young-Jo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.351-362
    • /
    • 2012
  • Weather generators are statistical tools to produce synthetic sequences of daily weather variables. We propose the multisite weather generators with a spatio-temporal correlation based on hierarchical generalized linear models. We develop a computational algorithm to produce future weather variables that use three different types of green-house gases scenarios. We apply the proposed method to a daily time series of precipitation and average temperature for South Korea.

Simulation Models for Investigation of Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.765-773
    • /
    • 2008
  • Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple-input multiple-output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum-rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio-temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.

  • PDF