• Title/Summary/Keyword: Spatial-Temporal Model

Search Result 794, Processing Time 0.021 seconds

Context-Awareness Service Modeling of Realtime Sensor Network using Enhanced Petri-Net (Enhanced Petri-Net을 이용한 실시간 센서 네트워크의 상황 정보 서비스 모델링)

  • Lee, Jae-Bong;Lee, Hong-Ro
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • Some context is characterized by a single event in computing environment, but many other contexts are determined by a lot of things which occur with a space and a time. The Realtime Sensor Network context-awareness service that interacts with the physical space can have property such as time. A methodology that is specified the relationship between the contexts and the service needs to be developed to Realtime context-awareness deal with spatio-temporal. In this paper, we propose an approach which should include spatio-temporal property in the context model, and verify its effectiveness using enhanced Petri-Net. The context-awareness service modeling of Realtime Sensor Network is discussed the properties of model such as basic Petri-Net, patterned Petri-Net, or Spatio-temporal Petri-Net. The proposed methodology demonstrated using an example that is SAEMANGUEM warming watching system. The use of Spatio-temporal Petri-Net will contribute not only to develop the application but also to model the spatio-temporal context awareness.

A study on enhancement of heterogeneous noisy image quality for the performance improvement of target detection and tracking (표적 탐지/추적 성능 향상을 위한 불균일 미세 잡음 영상 화질개선 연구)

  • Kim, Y.;Yoo, P.H.;Kim, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.923-936
    • /
    • 2014
  • Images can be contaminated with different types of noise, for different reasons. The neighborhood averaging and smoothing by image averaging are the classical image processing techniques for noise removal. The classical spatial filtering refers to the aggregate of pixels composing an image and operating directly on these pixels. To reduce or remove effectively noise in image sequences, it usually needs to use noise reduction filter based on space or time domain such as method of spatial or temporal filter. However, the method of spatial filter can generally cause that signals of objects as the target are also blurred. In this paper, we propose temporal filter using the piece-wise quadratic function model and enhancement algorithm of image quality for the performance improvement of target detection and tracking by heterogeneous noise reduction. Image tracking simulation that utilizes real IIR(Imaging Infra-Red) images is employed to evaluate the performance of the proposed image processing algorithm.

Temporal and Spatial Distributions of PM10, NOx and O3 around the Road (도로 주변의 PM10, NOx 및 O3의 시공간적 농도 분포 연구)

  • Kwon O-Yul;An Young-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.440-450
    • /
    • 2006
  • PM10, NOx, and $O_3$ were measured at six locations, of which each three is horizontally and vertically distributed respectively, in an apartment complex around the heavily traffic road. Those were measured seven times a day with two hours interval starting from 8 o'clock in the morning for 15 days during May 2005 $\sim$ September 2005. PM10 and NOx showed high concentrations in rush hours while low concentrations in midday due to the direct emissions from automobiles in operation. Temporal variations of 01 showed very much similar trend appeared in normal urban atmospheres. The spatial distributions of PM10, NOx and $O_3$ showed that almost all of concentrations were higher in a row of Roadside > Surface at 130 m apart from the road > Surface at 230 m apart from the road > 3rd floor of apartment building > 15th floor of apartment building > 27th floor of apartment building. Model equations, which can project spatial concentration distributions, were constructed by combining the horizontal and the vertical linear regression equations derived from six mean values corresponding to six measuring locations. According to inter-comparison of PM10, NOx, and $O_3$ with the constructed model equations, concentration gradients were higher in a row of Vertical direction of NOx > Vertical direction of PM10 > Horizontal direction of NOx > Horizontal direction of PMIO > Vertical direction of $O_3$ > Horizontal direction of $O_3$. Why concentration gradient of particulate PM10 is lower than that of gaseous NOx is in question, and should be studied.

Friendship Influence on Mobile Behavior of Location Based Social Network Users

  • Song, Yang;Hu, Zheng;Leng, Xiaoming;Tian, Hui;Yang, Kun;Ke, Xin
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • In mobile computing research area, it is highly desirable to understand the characteristics of user movement so that the user friendly location aware services could be rendered effectively. Location based social networks (LBSNs) have flourished recently and are of great potential for movement behavior exploration and datadriven application design. While there have been some efforts on user check-in movement behavior in LBSNs, they lack comprehensive analysis of social influence on them. To this end, the social-spatial influence and social-temporal influence are analyzed synthetically in this paper based on the related information exposed in LBSNs. The check-in movement behaviors of users are found to be affected by their social friendships both from spatial and temporal dimensions. Furthermore, a probabilistic model of user mobile behavior is proposed, incorporating the comprehensive social influence model with extent personal preference model. The experimental results validate that our proposed model can improve prediction accuracy compared to the state-of-the-art social historical model considering temporal information (SHM+T), which mainly studies the temporal cyclic patterns and uses them to model user mobility, while being with affordable complexity.

Modeling temporal cadastre for land information management

  • Liou, Jae-Ik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.17-28
    • /
    • 2002
  • Time is regarded as an essential feature of land information enabling to track historical landmarks of land uses, ownerships, and taxations based on cadastral maps. Object-oriented temporal modeling helps to simulate and imitate time-varying cadastral data in a chronological and persistent manner. The aim of study is to analyze the role of temporal cadastre tracing footprints of foregoing events in response to various needs and demands associated with historical information of cadastral transactions. In this paper, temporal cadastral object model (TCOM) is proposed to delineate object version history. As an evidence of a new approach and conceptual idea for the importance of temporal cadastre, a part of spatio-temporal processes is illustrated to explain major changes of cadastral map. The feasibility and application of the approach is confirmed by proof-of-concept of temporal cadastre in land information management.

  • PDF

Estimation of Spatial-Temporal Net Primary Productivity and Soil Carbon Storage Change in the Capital area of South Korea under Climate Change (기후변화에 따른 수도권 산림의 순일차생산량과 토양탄소저장량의 시공간적 변화 추정)

  • Kwon, Sun-Soon;Choi, Sun-Hee;Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.757-765
    • /
    • 2012
  • The purpose of this study was to estimate the spatial-temporal NPP(Net Primary Productivity) and SCS(Soil Carbon Storage) of forest ecosystem under climate change in the capital area of South Korea using Mapss-Century1 (MC1), one of Dynamic Global Vegetation Models (DGVMs). The characteristics of the NPP and SCS changes were simulated based on a biogeochemical module in this model. As results of the simulation, the NPP varies from 2.02 to 7.43 tC $ha^{-1}\;yr^{-1}$ and the SCS varies from 34.55 to 84.81 tC $ha^{-1}$ during 1971~2000 respectively. Spatial mean NPP showed a little decreasing tendency in near future (2021~2050) and then increased in far future (2071~2100) under the condition of increasing air temperature and precipitation which were simulated by the A1B climate change scenario of Intergovernmental Panel on Climate Change (IPCC). But it was estimated that the temporal change of spatial mean NPP indicates 4.62% increasing tendency in which elevation is over 150m in this area. However, spatial mean SCS was decreased in the two future periods under same climate condition.

Spatio-temporal Data Model for 2D Map and It's Implementation Method (2차원 지도용 시계열 공간 데이터 모델과 구축방법)

  • Hwang, Jin Sang;Kim, Jae Koo;Yun, Hong Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • Domestic 2D maps includes only most up-to-date information at the time of production without historical information. Therefore, it is hard to identify the change history of real world objects. In this research, Spatio-temporal model for 2D map were developed and it's compatibility was verified through the pilot project conducted on the Gwanggyo area of Gyeonggi province. Also, the procedure to generate 2D spatio-temporal database using maps made periodically on the same target area was introduced for showing the possibility of realizing nation wide spatio-temporal 2D map using the national base map updated periodically.

Spatio-Temporal Semantic Sensor Web based on SSNO (SSNO 기반 시공간 시맨틱 센서 웹)

  • Shin, In-Su;Kim, Su-Jeong;Kim, Jeong-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • According to the recent development of the ubiquitous computing environment, the use of spatio-temporal data from sensors with GPS is increasing, and studies on the Semantic Sensor Web using spatio-temporal data for providing different kinds of services are being actively conducted. Especially, the W3C developed the SSNO(Semantic Sensor Network Ontology) which uses sensor-related standards such as the SWE(Sensor Web Enablement) of OGC and defines classes and properties for expressing sensor data. Since these studies are available for the query processing about non-spatio-temporal sensor data, it is hard to apply them to spatio-temporal sensor data processing which uses spatio-temporal data types and operators. Therefore, in this paper, we developed the SWE based on SSNO which supports the spatio-temporal sensor data types and operators expanding spatial data types and operators in "OpenGIS Simple Feature Specification for SQL" by OGC. The system receives SensorML(Sensor Model Language) and O&M (Observations and Measurements) Schema and converts the data into SSNO. It also performs the efficient query processing which supports spatio-temporal operators and reasoning rules. In addition, we have proved that this system can be utilized for the web service by applying it to a virtual scenario.

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.

A Cost Model for the Performance Prediction of the TPR-tree (TPR-tree의 성능 예측을 위한 비용 모델)

  • 최용진;정진완
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.252-260
    • /
    • 2004
  • Recently, the TPR-tree has been proposed to support spatio-temporal queries for moving objects. Subsequently, various methods using the TPR-tree have been intensively studied. However, although the TPR-tree is one of the most popular access methods in spatio-temporal databases, any cost model for the TPR-tree has not yet been proposed. Existing cost models for the spatial index such as the R-tree do not accurately ostinato the number of disk accesses for spatio-temporal queries using the TPR-tree, because they do not consider the future locations of moving objects. In this paper, we propose a cost model of the TPR-tree for moving objects for the first time. Extensive experimental results show that our proposed method accurately estimates the number of disk accesses over various spatio-temporal queries.