DOI QR코드

DOI QR Code

Estimation of Spatial-Temporal Net Primary Productivity and Soil Carbon Storage Change in the Capital area of South Korea under Climate Change

기후변화에 따른 수도권 산림의 순일차생산량과 토양탄소저장량의 시공간적 변화 추정

  • Kwon, Sun-Soon (Dept. of Environmental Science & Engineering, College of Engineering, Ewha Womans University) ;
  • Choi, Sun-Hee (Dept. of Environmental Science & Engineering, College of Engineering, Ewha Womans University) ;
  • Lee, Sang-Don (Dept. of Environmental Science & Engineering, College of Engineering, Ewha Womans University)
  • 권선순 (이화여자대학교 환경공학과) ;
  • 최선희 (이화여자대학교 환경공학과) ;
  • 이상돈 (이화여자대학교 환경공학과)
  • Received : 2012.08.29
  • Accepted : 2012.09.25
  • Published : 2012.10.31

Abstract

The purpose of this study was to estimate the spatial-temporal NPP(Net Primary Productivity) and SCS(Soil Carbon Storage) of forest ecosystem under climate change in the capital area of South Korea using Mapss-Century1 (MC1), one of Dynamic Global Vegetation Models (DGVMs). The characteristics of the NPP and SCS changes were simulated based on a biogeochemical module in this model. As results of the simulation, the NPP varies from 2.02 to 7.43 tC $ha^{-1}\;yr^{-1}$ and the SCS varies from 34.55 to 84.81 tC $ha^{-1}$ during 1971~2000 respectively. Spatial mean NPP showed a little decreasing tendency in near future (2021~2050) and then increased in far future (2071~2100) under the condition of increasing air temperature and precipitation which were simulated by the A1B climate change scenario of Intergovernmental Panel on Climate Change (IPCC). But it was estimated that the temporal change of spatial mean NPP indicates 4.62% increasing tendency in which elevation is over 150m in this area. However, spatial mean SCS was decreased in the two future periods under same climate condition.

Keywords

References

  1. 국립기상연구소, 2009, 기후변화 이해하기: IPCC 4차 평가보고서 실무그룹 I, II, III 기술요약보고서 표와 그림을 중심으로.
  2. 산림청, 2004-2010, 임업통계연보, 산림청 http://www.forest.go.kr
  3. 산림청, 2009, 기후변화와 산림 26p, http://carbon.kfri.go.kr
  4. 유성진, 이우균, 손요환, Akihiko Ito, 2012, 생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정, 대한원격탐사학회지, 28(1), 145-157. https://doi.org/10.7780/kjrs.2012.28.1.145
  5. 이민아, 이우균, 송철철, 이준학, 최현아, 김태민, 2007, 기온 및 강수량의 시공간 변화예측 및 변이성, 한국GIS학회지, 15(3), 267-278.
  6. 이상철, 최성호, 이우균, 박태진, 오수현, 김순아, 2011, 기후변화 시나리오에 따른 산림분포 취약성 평가, 한국임학회지, 100(2), 256-265.
  7. 이아름, 노남진, 윤태경, 이수경, 서경원, 이우균, 조용성, 손요환, 2009, 연륜연대학적 접근을 이용한 Yasso 모델의 산림토양탄소 저장량 추정, 한국임학회지, 98(6), 791-798.
  8. 이재석, 서상욱, 민윤경, 채남이, 김준, 구진우, 박래현, 손요환, 임종환, 2005, 광릉 낙엽 활엽수림의 탄소 수지, 한국농림기상학회 학술발표, 2, 15-18.
  9. 임희정, 이영희, 권효정, 2010, 광릉 활엽수림에서 Community Land Model version 3.5-Dynamic Global Vegetaion Model의 평가, 한국농림기상학회, 12(2), 95-106.
  10. 홍지연, 심창섭, 이명진, 백경혜, 송원경, 전성우, 박용하, 2011, 위성영상으로 분석한 장기간 남한지역 순일차생산량 변화: 기후인자의 영향, 대한원격탐사학회지, 27(4), 467-480. https://doi.org/10.7780/kjrs.2011.27.4.467
  11. Bachelet, D., Lenihan, J.M., Daly, C., Neilson, R.P., Ojima, D.S., Parton, W.J., 2001, MC1: A Dynamic Vegetation Model for Estimation the Distribution of Vegetation and Associated Ecosystem Fluxes of Carbon, Nutrients, and Water, Technical Documentation version 1.0, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  12. Bonan, G.B. and Van Cleve, K., 1992, Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests, Can. J. Forest Res. Rev. Can. Rech. Forest, 22, 629-639. https://doi.org/10.1139/x92-084
  13. Choi, S., Lee, W.K., Kwak, H., Kim, S.R., Yoo, S.J., Choi, H.A., Park, S.M., Lim, J.H., 2011, Vulnerability Assessment of Forest Ecosystem to Climate Change in Korea Using MC1 Model, Journal of Forest Planning, 16, 149-161.
  14. Davidson, E.A. and Janssens, I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440(9), 165-173. https://doi.org/10.1038/nature04514
  15. IPCC, 2007, Climate Change 2007: Synthesis Report. Contribution of Working Group I, and to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland., pp. 104.
  16. Lenihan, J.M., Bachelet, D., Neilson, R.P., Drapek R., 2008, Response of Vegetation distribution, ecosystem productivity, and fire to climate change senarios for California, Climate Change, 87(1), S215-S230. https://doi.org/10.1007/s10584-007-9362-0
  17. Lenihan, J.M., Daly, C., Bachelet, D., Neilson, R.P., 1998, Simulating broad-scale fire severity in a dynamic global vegetation model, Northwest Sci., 72(2), 91-103.
  18. Melillo, J.M., Steudler, P.A., Aber, J.D., Newkrik, K., Lux, H., Bowles, F.P., Catricala, C., Magill, A., Ahrens, T., Morrisseau, S., 2002, Soil warming and carbon-cycle feedbacks to the climate system, Science, 298, 2173-2176. https://doi.org/10.1126/science.1074153
  19. Neff, J.C. and Hooper, D.U., 2002, Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils, Global Change Biol., 8, 872-884. https://doi.org/10.1046/j.1365-2486.2002.00517.x
  20. Neilson, R.P., 1995, A model for predicting continental scale vegetation distribution and water balance, Ecological Applications, 5(2), 362-385. https://doi.org/10.2307/1942028
  21. Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., Running, S.W., 2003, Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, SCIENCE, 300, 1560-1563. https://doi.org/10.1126/science.1082750
  22. Parton, W.J., Schimel, D.S., Ojima, D.S., Cole, C.V., 1994, A general study model for soil organic matter dynamics, sensitivity to litter chemistry, texture, and management, In: Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. Madison, WI: Soil Science Society of America, 147-167.
  23. Peng, C., Zhou, X., Zhou, S., Wang, X., Zhu B., 2009, Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction, Global and Planetary Change, 66, 179-184. https://doi.org/10.1016/j.gloplacha.2008.12.001
  24. Rodhe, H., 1990, A comparison of the contributions of various gases the greenhouse effect, Science, 248, 1217-1219. https://doi.org/10.1126/science.248.4960.1217
  25. Trumbore, S.E., Chadwick, O.A., Amundson, R., 1996, Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change, SCIENCE, 272, 393-396. https://doi.org/10.1126/science.272.5260.393