• Title/Summary/Keyword: Spatial using behavior

Search Result 414, Processing Time 0.024 seconds

3-D Finite Element Modeling of Fiber Reinforced Rubber Composites using a Rubber Element (리바요소를 이용한 섬유강화 고무기저 복합재료의 3차원 유한요소 모델링기법)

  • Jeong, Se-Hwan;Song, Jung-Han;Kim, Jin-Woong;Kim, Jin-Young;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1518-1525
    • /
    • 2006
  • Finite element analyses of structures made of the fiber reinforced composites require an adequate method to characterize the high anisotropic behavior induced by one or several layers of fiber cords with different spatial orientation embedded in a rubber matrix. This paper newly proposes a continuum based rebar element considering change of the orientation of the fiber during deformation of the composite. The mechanical behavior of the embedded fiber is modeled using two-node bar elements in order to consider the relative deformation and spatial orientation of the embedded fiber. For improvement of the analysis accuracy, the load-displacement curve of fiber is applied to the stiffness matrix of fiber. A finite element program is constructed based on the total Lagrangian formulation considering both geometric and material nonlinearity. Finite element analyses of the tensile test are carried out in order to evaluate the validity of the proposed method. Analysis results obtained with the proposed method provides realistic representation of the fiber reinforced rubber composite compared to results of other two models by the Halpin-Tsai equation and a rebar element in ABAQUS/Standard.

Seismic Performance of an Inverted V-type Eccentrically Braced Steel Frames with Slit Dampers Using Shape Memory Alloy (형상기억합금을 이용한 슬릿댐퍼 적용 역V형 편심가새골조의 내진 성능)

  • Jang, Han Ryul;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.39-48
    • /
    • 2022
  • The energy dissipation of inverted V-type eccentric steel braced frames can be achieved through the yielding of a slit link, through yielding of a number of strips between slits when the frame is subjected to inelastic cyclic deformation. On the other hand, the development of seismic resistance system without residual deformation is obtained by applying the superelasdtic shape memory alloy (SMA) material into the brace and link elements. This paper presents results from a systematic three-dimensional nonlinear finite element analysis on the structural behavior of the eccentric bracing systems subjected to cyclic loadings. A wide scope of structural behaviors explains the horizontal stiffness, hysteretic behaviors, and failure modes of the recentering eccentric bracing system. The accurate results presented here serve as benchmark data for comparison with results obtained using modern experimental testing and alternative theoretical approaches.

A Study on the Spatial Organization of Special Classes in Elementary and Middle Schools(1) (특수학급(特殊學級) 공간구성(空間構成)에 관한 건축계획적(建築計劃的) 연구(硏究)(1) - 특수학급 학생들의 학습활동을 중심으로 -)

  • Choi, Byung-Kwan;Rieu, Ho-Seoup
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.12 no.4
    • /
    • pp.17-29
    • /
    • 2005
  • The purpose of this study is to establish fundamental standards of architectural planning concerning special class facilities in order to offer the basic information on the appropriate spatial organization of the special classroom by looking at the relationship between learning activities and living activities and the existing spatial organization. At present, there are no proper architectural standards which correspond to special class children's handicap and it's various characteristics. The special classes are just using ordinary classrooms without a considerations of the children with manifold handicap. In this sense, this study deals with appropriate special class facilities corresponding to the various characteristics of children's handicap, the contacting activities of special children with ordinary children and finally proper environment for the mainstreaming education which special education pursues.

The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures (대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가)

  • Han, Sang-Eul;Lee, Sang-Ju;Cho, Jun-Yeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

A Study on Spatial Advantage of Oegi Purlin in the Construction of Hip and Gable Roof of Buddha Hall in Korean Buddhist Temples (전통 사찰 불전의 팔작지붕 가구구성에서 외기도리의 공간적 이점에 대한 연구)

  • Park, Sae-am;Han, Ji-man
    • Journal of architectural history
    • /
    • v.28 no.4
    • /
    • pp.7-16
    • /
    • 2019
  • In this study, I would like to inquire about the composition of oegi(外機) on the hip and gable roof. Oegi purlin compose the basic member of framework of a hip and gable roof in both sides roof, supporting the inside end of the side rafter. However, the oegi purlin is not simply used to form hip and gable roof. The effects of using oegi purlin have the advantages of spatial. The spatial advantages are the width of the toekan(退間) increases as the oegi purlin escapes from column row and to increase the ceiling height by becoming a point of staying the ceiling. That reflect the desire to expand indoor space due to changes in worship behavior. Oegi purlin was used not only for structural needs, but also for altering in indoor space due to the changing times.

Modeling Deformation Behavior of Heterogenous Microstructure of Ti-6AI-4V Alloy using Probability Functions (확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형거동 모델링)

  • Ko, Eun-Young;Kim, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.292-297
    • /
    • 2003
  • A stochastic approach has been presented for superplastic deformation of Ti-6AJ-4V alloy, and probability function are used to heterogeneous phase distributions. The experimentally observed spatial correlation function are developed, and microstructural evolutions together with superplastic deformation behavior have investigated by means of the probability function. The result have shown that the probability varies approximately linearly with separation with distance, and significant deformation enhanced probability changes during the deformation. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite clement implementation using Monte Carlo simulation associated with phase re-distributions shows that better agreement with experimental data of failure strain on the test specimen.

  • PDF

A Systematic Review of Spatial and Spatio-temporal Analyses in Public Health Research in Korea

  • Byun, Han Geul;Lee, Naae;Hwang, Seung-sik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • Objectives: Despite its advantages, it is not yet common practice in Korea for researchers to investigate disease associations using spatio-temporal analyses. In this study, we aimed to review health-related epidemiological research using spatio-temporal analyses and to observe methodological trends. Methods: Health-related studies that applied spatial or spatio-temporal methods were identified using 2 international databases (PubMed and Embase) and 4 Korean academic databases (KoreaMed, NDSL, DBpia, and RISS). Two reviewers extracted data to review the included studies. A search for relevant keywords yielded 5919 studies. Results: Of the studies that were initially found, 150 were ultimately included based on the eligibility criteria. In terms of the research topic, 5 categories with 11 subcategories were identified: chronic diseases (n=31, 20.7%), infectious diseases (n=27, 18.0%), health-related topics (including service utilization, equity, and behavior) (n=47, 31.3%), mental health (n=15, 10.0%), and cancer (n=7, 4.7%). Compared to the period between 2000 and 2010, more studies published between 2011 and 2020 were found to use 2 or more spatial analysis techniques (35.6% of included studies), and the number of studies on mapping increased 6-fold. Conclusions: Further spatio-temporal analysis-related studies with point data are needed to provide insights and evidence to support policy decision-making for the prevention and control of infectious and chronic diseases using advances in spatial techniques.

Research on Dynamic Behavior of Double-Layer Barrelvault Arch Systems Subjected to Earthquake Loadings (지진하중에 대한 복층 배럴볼트 시스템의 동적거동에 대한 연구)

  • Shin, Ji-Wook;Lee, Ki-Hak;Jung, Chan-Woo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • This paper presents dynamic behavior of double-layer barrelvault systems subjected to earthquake loadings. In order to investigate different seismic behaviors according to Time History Analysis (THA), six open angles were employed and different fundamental frequencies corresponding to each open angle were considered. A total of 24 double-layer structures were developed by using Midas Gen., which is a computer analysis program and then THA with three different earthquakes with 5% damping ratio was performed. This study investigated the characteristics of the dynamic response for X-, Y- and Z- directions, both subjected to the horizontal earthquake (H) and applied to the vertical earthquake (V) with respect to the each variable, which assumed to be important aspects for spatial structure. In order to examine the dynamic characteristics, the ratio of acceleration in specific nodes of barrelvaults was evaluated at the time with maximum response. The main purpose of this study is to obtain equations of the equivalent earthquake loading with respect to the barrelvault systems.

  • PDF

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

Estimation Accuracy Analysis of GPS Inter-Frequency Biases (GPS 주파수간 편이 추정정확도 분석)

  • Kim, Minwoo;Kim, Jeongrae;Heo, Moonbeom
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2010
  • The accuracy and integrity of global navigation satellite systems (GNSS) can be improved by using GNSS augmentation systems. Large ionospheric spatial gradient, during ionosphere storm, is a major threat for using GNSS augmentation systems by increasing the spatial decorrelation between a reference system and users. Ionosphere decorrelation behavior can be analyzed by using dual frequency GPS data. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual(P1 and P2) frequencies and they must be accurately estimated before computing ionosphere delays. GPS network data in Korea is used to compute each receiver's IFB, and their estimation accuracy and variability are analyzed. IFB estimation methodology to apply for ionosphere gradient analysis is discussed.

  • PDF