• Title/Summary/Keyword: Spatial monitoring

Search Result 1,196, Processing Time 0.023 seconds

Effect of spatial characteristics of a weak zone on tunnel deformation behavior

  • Yoo, Chungsik
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • This paper focuses on the deformation behavior of tunnels crossing a weak zone in conventional tunneling. A three-dimensional finite element model was adopted that allows realistic modeling of the tunnel excavation and the support installation. Using the 3D FE model, a parametric study was conducted on a number of tunneling cases with emphasis on the spatial characteristics of the weak zone such as the strike and dip angle, and on the initial stress state. The results of the analyses were thoroughly examined so that the three-dimensional tunnel displacements at the tunnel crown and the sidewalls can be related to the spatial characteristic of the weak zone as well as the initial stress state. The results indicate that the effectiveness of the absolute displacement monitoring data as early warning indicators depends strongly on the spatial characteristics of the weak zone. It is also shown that proper interpretation of the absolute monitoring data can provide not only early warning for a weak zone outside the excavation area but also information on the orientation and the extent of the weak zone. Practical implications of the findings are discussed.

The Assessment of Air Quality Monitoring Network Considering the Change of Various Environmental Factors in Busan (부산지역의 다양한 환경적 요인의 변화에 따른 대기오염측정망 평가)

  • Yoo Eun-Chul;Park Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.405-420
    • /
    • 2006
  • This study was conducted to understand the change of spatial environmental factors including populations, air pollution source and land-use in Busan, during the period of 1995 and 2004. Firstly, the grids (5 km $\times$ 5 km) were divided using the TM coordinates of Busan and the statistical data of populations and land-use were marked on each grid during studying period. Secondly, the SO$_2$, NO$_2$ and O$_3$ concentrations of areas where air quality monitoring station was not established were estimated on the basis of these air pollutants measured at close air quality monitoring station by kriging method. In order to understand spatial change of air pollution and to investigate duplication and reduction of existing stations, semivariogram, correlation and cluster analysis were carried out. This study showed that the population increased in 2004 only on 8 grids compared to in 1995. The spatial change of SO$_2$, NO$_2$ and O$_3$ was investigated by semivariogram in Busan area. As the results of semivariogram, the spatial change of 502 become smaller and simpler, while that of NO2,03 become larger and more complex in 2004 than in 1995, According to the result of correlation and cluster analysis, the reduction of measurement item or the relocation of air quality monitoring station can be needed in the high dense grid area.

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.

A Study on Allocation of Air Pollution Monitoring Network by Spatial Distribution Analysis of Ozone and Nitrogen Dioxide Concentrations in Busan (부산지역 오존 및 이산화질소 농도의 공간분포해석에 따른 대기오염측정망 배치연구)

  • Yoo, Eun-Chul;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.583-591
    • /
    • 2004
  • In this study, methodologies for the rational organization of air pollution monitoring network were examined by understanding the characteristics of temporal and spatial distribution of secondary air pollution, whose significance would increase hereafter. The data on $O_3$ and $NO_2$ concentrations during high ozone period in 1998~1999 recorded at the nine air pollution monitoring station in Busan were analysed using principal component analysis (PCA) and cumulative semivariogram. It was found that the ozone concentration was deeply associated with the daily emission characteristics or the $O_3$ precusors, and nitrogen dioxide concentration largely depends on the emission strength of regional sources. According to the spatial distribution analysis of ozone and nitrogen dioxide in Busan using cumulative semivariograms, the number of monitoring stations for the secondary air pollution can be reduced in east-west direction, but reinforced in north-south direction to explain the spacial variability. More scientific and rational relocation of air pollution monitoring network in Busan would be needed to investigate pollution status accurately and to plan and implement the pollution reduction policies effectively.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

Spatial Information Application Case for Appropriate Location Assessment of PM10 Observation Network in Seoul City (서울시 미세먼지 관측망 위치 적정성 평가를 위한 공간정보 활용방안)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.175-184
    • /
    • 2017
  • Recently, PM10 is becoming a main issue in Korea because it causes a variety of diseases, such as respiratory and ophthalmologic diseases. This research studied to spatial information application cases for evaluating the feasibility of the location for PM10 observation stations utilizing Geogrphic Information System(GIS) spatial analysis. The spatial Information application cases for optimal location assessment were investigated to properly manage PM10 observation stations which are closely related with public spatial data and health care. There are 31 PM10 observation stations in Seoul city and the observed PM10 data at these stations were utilized to understand the overall assessment of PM10 stations to properly manage using interpolation methods. The estimated PM10 using Inverse Distance Weighted(IDW) and Kriging techniques and the map of PM10 concentrations of monitoring stations in Seoul city were compared with public spatial data such as precipitation, floating population, elementary school location. On the basis of yearly, seasonal and daily PM10 concentrations were used to evaluate the feasibility analysis and the location of current PM10 monitoring stations. The estimated PM10 concentrations were compared with floating population and calculated 2015 PM10 distribution data using zonal statistical methods. The national spatial data could be used to analyze the PM10 pollution distribution and additional determination of PM10 monitoring sites. It is further suggested that the spatial evaluation of national spatial data can be used to determine new location of PM10 monitoring stations.

Regression-based algorithms for exploring the relationships in a cement raw material quarry

  • Tutmez, Bulent;Dag, Ahmet
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.457-467
    • /
    • 2012
  • Using appropriate raw materials for cement is crucial for providing the required products. Monitoring relationships and analyzing distributions in a cement material quarry are important stages in the process. CaO, one of the substantial chemical components, is included in some raw materials such as limestone and marl; furthermore, appraising spatial assessment of this chemical component is also very critical. In this study, spatial evaluation and monitoring of CaO concentrations in a cement site are considered. For this purpose, two effective regression-based models were applied to a cement quarry located in Turkey. For the assessment, some spatial models were developed and performance comparisons were carried out. The results show that the regression-based spatial modelling is an efficient methodology and it can be employed to evaluate spatially varying relationships in a cement quarry.

A proposal of total energy operating system development using spatial information visualization and energy monitoring - Case study on design of total operation system in Sejong city - (건물 에너지 모니터링과 공간정보 시각화를 이용한 에너지 통합 운영시스템 개발 방안 제안 - 세종시 첫마을 공공건물을 대상으로 한 시스템 구축 사례 -)

  • Kwon, KeeJung;Lee, DongHwan;Cha, KiChun;Park, SeungHee
    • Journal of KIBIM
    • /
    • v.4 no.1
    • /
    • pp.8-12
    • /
    • 2014
  • This research and project is going on the Korean government. The objective of project is that developing total energy management solution. So, this paper is going to introduce a proposal that energy total operating system development using spatial information visualization and energy monitoring. It could efficiently operate the building energy wirelessly controling cooling/heating, lighting, air-conditioning and geothermal system. The metering data is collected to total database. The data is linked to BAS gateway, which is connected the device by the standard protocol.