• Title/Summary/Keyword: Spatial model

Search Result 5,188, Processing Time 0.031 seconds

Spatial Usage and Patterns of Corvus frugilegus after Sunrise and Sunset in Suwon Using Citizen Science (시민과학을 활용한 수원시에 출몰하는 떼까마귀(Corvus frugilegus)의 일출 및 일몰시 선호 서식지 분석)

  • Yun, Ji-Weon;Shin, Won-Hyeop;Kim, Ji-Hwan;Yi, Sok-Young;Kim, Do-Hee;Kim, Yu-Vin;Ryu, Young-Ryel;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.35-48
    • /
    • 2021
  • In Suwon, the overall hygiene of the city is threatened by the emergence of the rook(Corvus fugilegus) in the city. Rooks began to appear in November of 2016 and has continued to appear from November to March every year. In order to eradicate or to prepare an alternative habitat for rooks, this study aimed to identify the preferred habitat and specific environmental variables. Therefore, in this work, we aim to understand the predicted distribution of rooks in Suwon City with citizen science and through MaxENT, the most widely utilized habitat modeling using citizen science to analyze the preferred habitat of harmful tides appearing in urban areas. In this study, seven environmental variables were chosen: biotope group complex, building floor, vegetation, euclidean distance from farmland, euclidean distance from streetlamp, and euclidean distance from pole and DEM. Among the estimated models, after the time period of sunrise (08:00~18:00) the contribution percentage were as following: euclidean distance from arable land(39.2%), DEM(25.5%), euclidean distance from streetlamp(22.3%), euclidean distance from pole(7.1%), biotope group complex(4.9%), building floor(1%), vegetation(0%). In the time period after sunset(18:00~08:00) the contribution percentage were as following: biotope group complex(437.4%), euclidean distance from pole(26.8%), DEM(13.4%), euclidean distance from streetlamp(11.8%), euclidean distance from farmland(7.9%), building floor(1.4%), vegetation(1.3%).

Changes in the Spatiotemporal Patterns of Precipitation Due to Climate Change (기후변화에 따른 강수량의 시공간적 발생 패턴의 변화 분석)

  • Kim, Dae-Jun;Kang, DaeGyoon;Park, Joo-Hyeon;Kim, Jin-Hee;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.424-433
    • /
    • 2021
  • Recent climate change has caused abnormal weather phenomena all over the world and a lot of damage in many fields of society. Particularly, a lot of recent damages were due to extreme precipitation, such as torrential downpour or drought. The objective of this study was to analyze the temporal and spatial changes in the precipitation pattern in South Korea. To achieve this objective, this study selected some of the precipitation indices suggested in previous studies to compare the temporal characteristics of precipitation induced by climate change. This study selected ten ASOS observatories of the Korea Meteorological Administration to understand the change over time for each location with considering regional distribution. This study also collected daily cumulative precipitation from 1951 to 2020 for each point. Additionally, this study generated high-resolution national daily precipitation distribution maps using an orographic precipitation model from 1981 to 2020 and analyzed them. Temporal analysis showed that although annual cumulative precipitation revealed an increasing trend from the past to the present. The number of precipitation days showed a decreasing trend at most observation points, but the number of torrential downpour days revealed an increasing trend. Spatially, the number of precipitation days and the number of torrential downpour days decreased in many areas over time, and this pattern was prominent in the central region. The precipitation pattern of South Korea can be summarized as the fewer precipitation days and larger daily precipitation over time.

Past, Present and Future of Geospatial Scheme based on Topo-Climatic Model and Digital Climate Map (소기후모형과 전자기후도를 기반으로 한 지리공간 도식의 과거, 현재 그리고 미래)

  • Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.268-279
    • /
    • 2021
  • The geospatial schemes based on topo-climatology have been developed to produce digital climate maps at a site-specific scale. Their development processes are reviewed here to derive the needs for new schemes in the future. Agricultural and forestry villages in Korea are characterized by complexity and diversity in topography, which results in considerably large spatial variations in weather and climate over a small area. Hence, the data collected at a mesoscale through the Automated Synoptic Observing System (ASOS) operated by the Korea Meteorological Administration (KMA) are of limited use. The geospatial schemes have been developed to estimate climate conditions at a local scale, e.g., 30 m, lowering the barriers to deal with the processes associated with production in agricultural and forestry industries. Rapid enhancement of computing technologies allows for near real-time production of climate information at a high-resolution even in small catchment areas and the application to future climate change scenarios. Recent establishment of the early warning service for agricultural weather disasters can provide growth progress and disaster forecasts for cultivated crops on a farm basis. The early warning system is being expanded worldwide, requiring further advancement in geospatial schemes and digital climate mapping.

A Study on the Problems and Improvements of the Area Error Formula in Cadastral Surveying (지적측량의 면적오차 계산공식에 대한 문제점 및 개선방안 고찰)

  • Yang, Chul-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.5-16
    • /
    • 2022
  • Based on the general formula for the area error of a polygon and rectangular parcel, the constant term 0.0262 × M (scale denominator) of the area error calculation formula prescribed by the Enforcement Decree was analyzed. As a result, it is found that the formula appropriately reflects the characteristics of the graphical surveying as a typical rectangular parcel model, but quantitatively allows a relatively large area error. In addition, it is found that, even if the area is the same, 50% more area error than a square parcel could be calculated depending on the shape of the parcel, and that the allowable area error should be different when dividing a parcel. Based on the analysis, furthermore, this study shows a solution that can solve the problems at once from the point of cadastral surveying. These are, the problem of reflecting the accuracy of the surveying, the problem of reflecting the size and shape of the parcel, and the problem whether a single area error formula can be used without having to distinguish between graphical and numerical surveyings. The new formula that solves these problems will bring about improvements in many related factors and promote the development of digital cadastral system.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data (VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석)

  • Lee, Yonggwan;Chung, Jeehun;Jang, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1385-1394
    • /
    • 2022
  • This study was to analyze the change in albedo by level-2 land cover map for 20 years(2002-2021) using MODerate resolution Imaging Spectroradiometer (MODIS) data. Also, the difference from the MODIS data was analyzed using the 10-year (2012-2021) data of Visible Infrared Imaging Radiometer Suite (VIIRS). For the albedo data of MODIS and VIIRS, daily albedo data, MCD43A3 and VNP43IA, of 500 m spatial resolution of sinusoidal tile grid produced by Bidirectional Reflectance Distribution Function (BRDF) model were prepared for the South Korea range. Reprojection was performed using the code written based on Python 3.9, and the nearest neighbor was applied as the resampling method. White sky albedo and black sky albedo of shortwave were used for analysis. As a result of 20-year albedo analysis using MODIS data, the albedo tends to rise in all land use. Compared to the 2000s (2002-2011), the average albedo of the 2010s (2012-2021) showed the most significant increase of 0.0027 in the forest area, followed by the grass increase of 0.0024. As a result of comparing the albedo of VIIRS and MODIS, it was found that the albedo of VIIRS was larger from 0.001 to 0.1, which was considered to be due to differences in the surface reflectivity according to the time of image capture and sensor characteristics.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps (정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.363-369
    • /
    • 2021
  • High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.

Deriving AR Technologies and Contents to Establish a Safety Management System in Railway Infrastructure (철도 인프라 안전 관리 시스템 구축을 위한 AR 기술 및 콘텐츠 도출)

  • Jeon, Hae-In;Yu, Young-Su;Koo, Bon-Sang;Seo, Hyeong-Lyel;Kim, Ji-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.427-438
    • /
    • 2022
  • With the recent growing importance over safety management the need for advanced and technical approaches for on-site safety inspection methods has increased. Railway construction is subject to its own particular set of temporal and spatial challenges due to its unique facilities and equipment. This study aimed to investigate the field characteristics of railway infrastructure and improve the conventional field safety management methods by identifying the most appropriate features of AR technology. Group interviews and surveys were conducted with field safety experts to derive the major problems and inspection needs. Subsequently, various features of AR, such as BIM model projection, and remote conferencing, were investigated to determine their applicability to address safety issues. As a result, four problems in the current safety management process, such as 'lack of time due to the conventional inspection method and inspection of areas that are difficult to access', and three major inspection types, such as 'observance of work procedures, status of installation, adequate dimensional spacing', were identified to be improved when adopting AR based techniques. Furthermore, AR technology utilizing plans to solve safety inspection problems and effectively manage major inspection types were proposed, and a follow up survey was conducted with the same field safety experts to derive the priority of technology development.