Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.
Journal of the Korean Data and Information Science Society
/
제25권4호
/
pp.941-949
/
2014
Unit level logistic regression model with mixed effects has been used for estimating small area proportions, which treats the spatial effects as random effects and assumes linearity between the logistic link and the covariates. However, when the functional form of the relationship between the logistic link and the covariates is not linear, it may lead to biased estimators of the small area proportions. In this paper, we relax the linearity assumption and propose two types of kernel-based logistic regression models for estimating small area proportions. We also demonstrate the efficiency of our propose models using simulated data and real data.
최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.
지리통계자료는 관측지점이 지도 상에 점으로 표현되고 그 지점에서만 자료가 관측되는 측정값이다. 이러한 지리통계자료는 매우 다양한 관측망에서부터 얻어진다. 지리통계자료를 분석하고 예측함에 있어서 하나의 자료만 이용하는 것보다는 유사한 패턴을 갖는 다른 관측망에서 얻어지는 여러 자료들을 함께 사용한다면 예측력을 향상시킬 수 있을 것이다. 본 논문에서는 서로 다른 관측망에서 얻은 두 가지의 공간자료를 이용하여 분석 및 예측하고 이를 위해 공간적 연관성을 파악할 수 있는 적절한 계층모형을 구축하였다. 그리고 선형회귀모형에 근간을 둔 크리깅 결과와 계층모형 하에서의 결과를 여러 검증방법을 통해 비교하였다. 이 논문에서는 도시대기측정망에서 측정된 이산화황과 지상기상관측망에서 측정된 풍속자료를 이용하여 계층모형을 구축하고 이산화황만을 이용한 선형모형과 비교하였다. 또한 각 모형에 의한 이산화황 예측지도를 구성하였다.
본 연구에서는 처음으로 한반도 서울지역에서 OMI (Ozone Monitoring Instrument) 센서로 관측된 대류권 이산화질소 칼럼농도를 이용하여 OMI 센서의 관측시간인 13:45에서의 월 평균 및 일별 위성 지표 이산화질소 혼합비를 추정하였다. 본 연구에서는 세 가지 회귀모델들이 이용되었다. 첫 번째 회귀모델(M1)은 OMI 대류권 이산화질소 칼럼농도와 지점 측정값과의 선형회귀를 통한 회귀계수로 구성되어있다. 두번째 회귀모델(M2)은 OMI 대류권 이산화질소 칼럼농도와 AIRS (Atmospheric Infrared Sounder) 센서로 관측한 행성경계층 높이, 온도, 압력 자료 모두가 반영된 회귀모델이다. 세 번째 회귀모델(M3M, M3D)은 다중회귀모델로서 앞서 고려된 이산화질소 칼럼농도와 행성경계층 높이와 다양한 기상변수를 추가적으로 반영하는 회귀모델이다. 본 연구에서는 2009년에서 2011년까지를 회귀모델의 훈련기간으로 하여서 각 회귀식의 회귀계수를 도출하였으며 2012년도는 검증기간으로서 훈련기간에 도출된 회귀모델들의 성능을 평가하였다. 회귀모델들로 추정된 월 평균 지표 이산화질소 혼합비와 지점 관측소에서 지점 측정장비로 측정된 월평균 지표 이산화질소 혼합비와 가장 높은 상관성(avg. R = 0.77)을 보이는 회귀분석방법은 다중회귀분석방법(M3M)이다. 또한, 회귀모델들로 추정된 13:45에서의 일 지표 이산화질소 혼합비와 지점 관측소에서 지점장비로 측정된 지표 이산화질소 혼합비와 가장 좋은 상관성(avg. R = 0.55)을 보인 것도 다중회귀분석방법(M3D)이다. 회귀모델들로 추정된 지표 이산화질소 혼합비는 지점 측정값에 비해 과소추정 되는 경향이 나타났다. 회귀모델들로 추정된 지표 이산화질소 혼합비를 평가하기 위해 지점 측정값과의 RMSE (Root Mean Square Error), mean bias, MAE (Mean Absolute Error), percent difference와 같은 통계분석을 실시하였다. 본 연구는 위성을 통한 지표 이산화질소 혼합비 산출 가능성을 보여준다.
Communications for Statistical Applications and Methods
/
제13권1호
/
pp.177-190
/
2006
The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.
본 연구에서는 다중회귀분석을 이용하여 산악효과를 야기하는 지형인자와 강수와의 관계를 파악하였다. 섬 전체가 산악지형인 제주도의 연평균강수량과 지수홍수법으로 산출한 확률강우량을 강수자료로 사용하여 산악효과를 야기하는 지형인자로 선정한 고도, 위 경도와 회귀모형을 구성하였다. 회귀분석 결과 연평균강수량과 고도와의 선형관계가 확률강우량에서도 동일하게 나타났으며, 고도이외에 위도, 경도를 각각 추가인자로 고려할 경우 강우량과 더욱 강한 상관성을 보였다. 또한, 고도와 위도, 경도를 모두 고려한 회귀모형을 이용한 지형공간분석 결과 제주도의 실제 강수특성과 마찬가지로 남동부로 편중된 강수형태를 보여 모형의 적합성을 증명하였다. 그러나 지속시간 및 재현기간과 무관하게 높은 고도에서 회귀식의 유효성이 감소하므로, 높은 고도에서의 추가적인 산악효과인자의 강수량에 대한 영향이 존재될 것으로 판단되므로 추후 연구가 필요하다.
Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.
Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.
58개 기상관측소에서 최근 22년간(1981-2002) 측정된 기상 자료를 이용하여 국내의 기온(SAT) 및 지면온도(GST)의 시공간적 변동 경향을 분석하였다. 먼저 관측 자료로부터 각 관측소의 평균기온(MSAT)과 평균지면온도(MGST)를 계산하였으며, 다중선형회귀분석을 통해 MSAT와 MGST를 예측할 수 있는 회귀식을 산정하였다. 회귀모형의 회귀변수는 관측소의 위도 및 고도이다. 회귀모형의 추정치와 실제 관측값의 결정계수($R^2$)는 각각 0,92와 0.94로 나타나 모형의 예측 정확성이 매우 높은 것으로 분석되었다. MGST는 지열펌프 시스템 설계의 주요 입력 변수이므로 최근 지열에너지자원 활용 분야에서 매우 중요하게 다루어지는 변수이다. 따라서 제시된 회귀모형은 신뢰할만한 관측 자료가 없는 지역에서 MGST를 추정하는데 매우 유용하게 이용될 수 있을 것으로 예상된다. SAT 자료에 대한 선헝회귀분석을 통해 지구온난화 및 도시화에 기인한 기온 상승의 장기 추세 변동성을 탐색하였다. 1개 관측소를 제외한 57개 관측소에서 $0.005{\sim}0.088^{\circ}C/yr$ 범위의 기온증가율을 가지는 추세 변동이 확인되었다. 또한 GST에 영향을 미치는 기상요소로서 일사량, 지구복사, 강수량 및 적설량 자료를 분석하였다. GST는 주로 SAT 및 일사량에 의하여 결정되지만 강수 및 증발에 의한 토양의 열용량 변화, 적설에 의한 대기와 지표면 차단, 지구복사에 영향을 줄 수 있는 대기의 조건 변화 등이 복합적인 변동 요인으로 작용하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.