• 제목/요약/키워드: Spatial linear regression model

검색결과 94건 처리시간 0.032초

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Estimating small area proportions with kernel logistic regressions models

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.941-949
    • /
    • 2014
  • Unit level logistic regression model with mixed effects has been used for estimating small area proportions, which treats the spatial effects as random effects and assumes linearity between the logistic link and the covariates. However, when the functional form of the relationship between the logistic link and the covariates is not linear, it may lead to biased estimators of the small area proportions. In this paper, we relax the linearity assumption and propose two types of kernel-based logistic regression models for estimating small area proportions. We also demonstrate the efficiency of our propose models using simulated data and real data.

다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가 (Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1711-1720
    • /
    • 2020
  • 최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.

다양한 관측네트워크에서 얻은 공간자료들을 활용한 계층모형 구축 (On the Hierarchical Modeling of Spatial Measurements from Different Station Networks)

  • 최지은;박만식
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.93-109
    • /
    • 2013
  • 지리통계자료는 관측지점이 지도 상에 점으로 표현되고 그 지점에서만 자료가 관측되는 측정값이다. 이러한 지리통계자료는 매우 다양한 관측망에서부터 얻어진다. 지리통계자료를 분석하고 예측함에 있어서 하나의 자료만 이용하는 것보다는 유사한 패턴을 갖는 다른 관측망에서 얻어지는 여러 자료들을 함께 사용한다면 예측력을 향상시킬 수 있을 것이다. 본 논문에서는 서로 다른 관측망에서 얻은 두 가지의 공간자료를 이용하여 분석 및 예측하고 이를 위해 공간적 연관성을 파악할 수 있는 적절한 계층모형을 구축하였다. 그리고 선형회귀모형에 근간을 둔 크리깅 결과와 계층모형 하에서의 결과를 여러 검증방법을 통해 비교하였다. 이 논문에서는 도시대기측정망에서 측정된 이산화황과 지상기상관측망에서 측정된 풍속자료를 이용하여 계층모형을 구축하고 이산화황만을 이용한 선형모형과 비교하였다. 또한 각 모형에 의한 이산화황 예측지도를 구성하였다.

OMI 위성자료를 활용한 서울 지표 이산화질소 혼합비 추정 연구 (Estimation of surface nitrogen dioxide mixing ratio in Seoul using the OMI satellite data)

  • 김대원;홍현기;최원이;박준성;양지원;류재용;이한림
    • 대한원격탐사학회지
    • /
    • 제33권2호
    • /
    • pp.135-147
    • /
    • 2017
  • 본 연구에서는 처음으로 한반도 서울지역에서 OMI (Ozone Monitoring Instrument) 센서로 관측된 대류권 이산화질소 칼럼농도를 이용하여 OMI 센서의 관측시간인 13:45에서의 월 평균 및 일별 위성 지표 이산화질소 혼합비를 추정하였다. 본 연구에서는 세 가지 회귀모델들이 이용되었다. 첫 번째 회귀모델(M1)은 OMI 대류권 이산화질소 칼럼농도와 지점 측정값과의 선형회귀를 통한 회귀계수로 구성되어있다. 두번째 회귀모델(M2)은 OMI 대류권 이산화질소 칼럼농도와 AIRS (Atmospheric Infrared Sounder) 센서로 관측한 행성경계층 높이, 온도, 압력 자료 모두가 반영된 회귀모델이다. 세 번째 회귀모델(M3M, M3D)은 다중회귀모델로서 앞서 고려된 이산화질소 칼럼농도와 행성경계층 높이와 다양한 기상변수를 추가적으로 반영하는 회귀모델이다. 본 연구에서는 2009년에서 2011년까지를 회귀모델의 훈련기간으로 하여서 각 회귀식의 회귀계수를 도출하였으며 2012년도는 검증기간으로서 훈련기간에 도출된 회귀모델들의 성능을 평가하였다. 회귀모델들로 추정된 월 평균 지표 이산화질소 혼합비와 지점 관측소에서 지점 측정장비로 측정된 월평균 지표 이산화질소 혼합비와 가장 높은 상관성(avg. R = 0.77)을 보이는 회귀분석방법은 다중회귀분석방법(M3M)이다. 또한, 회귀모델들로 추정된 13:45에서의 일 지표 이산화질소 혼합비와 지점 관측소에서 지점장비로 측정된 지표 이산화질소 혼합비와 가장 좋은 상관성(avg. R = 0.55)을 보인 것도 다중회귀분석방법(M3D)이다. 회귀모델들로 추정된 지표 이산화질소 혼합비는 지점 측정값에 비해 과소추정 되는 경향이 나타났다. 회귀모델들로 추정된 지표 이산화질소 혼합비를 평가하기 위해 지점 측정값과의 RMSE (Root Mean Square Error), mean bias, MAE (Mean Absolute Error), percent difference와 같은 통계분석을 실시하였다. 본 연구는 위성을 통한 지표 이산화질소 혼합비 산출 가능성을 보여준다.

Bayesian Modeling of Mortality Rates for Colon Cancer

  • Kim Hyun-Joong
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.177-190
    • /
    • 2006
  • The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.

지역빈도해석 및 다중회귀분석을 이용한 산악형 강수해석 (Orographic Precipitation Analysis with Regional Frequency Analysis and Multiple Linear Regression)

  • 윤혜선;엄명진;조원철;허준행
    • 한국수자원학회논문집
    • /
    • 제42권6호
    • /
    • pp.465-480
    • /
    • 2009
  • 본 연구에서는 다중회귀분석을 이용하여 산악효과를 야기하는 지형인자와 강수와의 관계를 파악하였다. 섬 전체가 산악지형인 제주도의 연평균강수량과 지수홍수법으로 산출한 확률강우량을 강수자료로 사용하여 산악효과를 야기하는 지형인자로 선정한 고도, 위 경도와 회귀모형을 구성하였다. 회귀분석 결과 연평균강수량과 고도와의 선형관계가 확률강우량에서도 동일하게 나타났으며, 고도이외에 위도, 경도를 각각 추가인자로 고려할 경우 강우량과 더욱 강한 상관성을 보였다. 또한, 고도와 위도, 경도를 모두 고려한 회귀모형을 이용한 지형공간분석 결과 제주도의 실제 강수특성과 마찬가지로 남동부로 편중된 강수형태를 보여 모형의 적합성을 증명하였다. 그러나 지속시간 및 재현기간과 무관하게 높은 고도에서 회귀식의 유효성이 감소하므로, 높은 고도에서의 추가적인 산악효과인자의 강수량에 대한 영향이 존재될 것으로 판단되므로 추후 연구가 필요하다.

A Spectral-spatial Cooperative Noise-evaluation Method for Hyperspectral Imaging

  • Zhou, Bing;Li, Bingxuan;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.530-539
    • /
    • 2020
  • Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

국내 지면온도의 시공간적 변화 분석 (Analyzing Spatial and Temporal Variation of Ground Surface Temperature in Korea)

  • 구민호;송윤호;이준학
    • 자원환경지질
    • /
    • 제39권3호
    • /
    • pp.255-268
    • /
    • 2006
  • 58개 기상관측소에서 최근 22년간(1981-2002) 측정된 기상 자료를 이용하여 국내의 기온(SAT) 및 지면온도(GST)의 시공간적 변동 경향을 분석하였다. 먼저 관측 자료로부터 각 관측소의 평균기온(MSAT)과 평균지면온도(MGST)를 계산하였으며, 다중선형회귀분석을 통해 MSAT와 MGST를 예측할 수 있는 회귀식을 산정하였다. 회귀모형의 회귀변수는 관측소의 위도 및 고도이다. 회귀모형의 추정치와 실제 관측값의 결정계수($R^2$)는 각각 0,92와 0.94로 나타나 모형의 예측 정확성이 매우 높은 것으로 분석되었다. MGST는 지열펌프 시스템 설계의 주요 입력 변수이므로 최근 지열에너지자원 활용 분야에서 매우 중요하게 다루어지는 변수이다. 따라서 제시된 회귀모형은 신뢰할만한 관측 자료가 없는 지역에서 MGST를 추정하는데 매우 유용하게 이용될 수 있을 것으로 예상된다. SAT 자료에 대한 선헝회귀분석을 통해 지구온난화 및 도시화에 기인한 기온 상승의 장기 추세 변동성을 탐색하였다. 1개 관측소를 제외한 57개 관측소에서 $0.005{\sim}0.088^{\circ}C/yr$ 범위의 기온증가율을 가지는 추세 변동이 확인되었다. 또한 GST에 영향을 미치는 기상요소로서 일사량, 지구복사, 강수량 및 적설량 자료를 분석하였다. GST는 주로 SAT 및 일사량에 의하여 결정되지만 강수 및 증발에 의한 토양의 열용량 변화, 적설에 의한 대기와 지표면 차단, 지구복사에 영향을 줄 수 있는 대기의 조건 변화 등이 복합적인 변동 요인으로 작용하는 것으로 나타났다.