• Title/Summary/Keyword: Spatial linear model

Search Result 282, Processing Time 0.028 seconds

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

An Adaptive Rate Control Using Piecewise Linear Approximation Model (부분 선형 근사 모델을 이용한 적응적 비트율 제어)

  • 조창형;정제창;최병욱
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.194-205
    • /
    • 1997
  • In video compression standards such as MPEG and H.263. rate control is one of the key components for good coding performance. This paper presents a simple adaptive rate control scheme using a piecewise linear approximation model. While conventional buffer control approach is performed by adjusting the quantization parameter linearly according to the buffer fullness. the proposed approach uses a piecewise linear approximation model derived from logarithmic relation between the quantization parameter and bitrate in data compression. In addition. a forward analyzer performed in the spatial domain is used to improve image quality. Simulation results demonstrate that the proposed method provides better performance than the conventional one and reduces the fluctuation of the PSNR per frame while maintaining the quality of the reconstructed frames at a relatively stable level.

  • PDF

Optical Pipelined Multi-bus Interconnection Network Intrinsic Topologies

  • d'Auriol, Brian Joseph
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.632-642
    • /
    • 2017
  • Digital all-optical parallel computing is an important research direction and spans conventional devices and convergent nano-optics deployments. Optical bus-based interconnects provide interesting aspects such as relative information communication speed-up or slow-down between optical signals. This aspect is harnessed in the newly proposed All-Optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) model. However, the physical realization of such communication interconnects needs to be considered. This paper considers spatial layouts of processing elements along with the optical bus light paths that are necessary to realize the corresponding interconnection requirements. A metric in terms of the degree of required physical constraint is developed to characterize the variety of possible solutions. Simple algorithms that determine spatial layouts are given. It is shown that certain communication interconnection structures have associated intrinsic topologies.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Crime hotspot prediction based on dynamic spatial analysis

  • Hajela, Gaurav;Chawla, Meenu;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1058-1080
    • /
    • 2021
  • Crime is not a completely random event but rather shows a pattern in space and time. Capturing the dynamic nature of crime patterns is a challenging task. Crime prediction models that rely only on neighborhood influence and demographic features might not be able to capture the dynamics of crime patterns, as demographic data collection does not occur frequently and is static. This work proposes a novel approach for crime count and hotspot prediction to capture the dynamic nature of crime patterns using taxi data along with historical crime and demographic data. The proposed approach predicts crime events in spatial units and classifies each of them into a hotspot category based on the number of crime events. Four models are proposed, which consider different covariates to select a set of independent variables. The experimental results show that the proposed combined subset model (CSM), in which static and dynamic aspects of crime are combined by employing the taxi dataset, is more accurate than the other models presented in this study.

A Study for the DEM Generation from the SPOT Imagery Using Alternative Sensor Model Based on DLT (DLT 기반의 대안적 모형화(Alternative Sensor Model) 방법을 이용한 SPOT 위성영상의 DEM 생성에 관한 연구)

  • Yang, In-Tae;Lee, In-Yeub;Oh, Myung-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.67-71
    • /
    • 2004
  • Increasing number and acquisition rate of satellite imagery promoted researches related with DEM generation based on satellite imagery. SPOT image gave us advantage to generate DEM which covers wide area of $60km{\times}60km$. In the case of rigorous sensor model of SPOT imagery, ephemeris data and several ground control points are need and requires arduous computational costs to produce DEM. In this study, using alternative sensor model based on Direct Linear Transform, we generated DEM using small number of ground control points. As a result, it was possible to acquire the DEM with suitable accuracy.

  • PDF

Geographical Characteristics of Business Start-up and Closing Business according to the Type of Industry (업종별 창업 및 폐업의 지리적 특성 분석)

  • Lee, Keumsook;Park, Sohyun
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.178-195
    • /
    • 2019
  • In this study, we examine business start-up and closing business in a geographical context. In particular, we analyze the geographical characteristics of business start-up and closing business according to the type of industry. For the purpose, we use the last 10 years data that have been related with current economic situation since the financial crisis. In first, we identify the spatial distribution patterns of business start-up and closing business, We examine the difference between individual businesses and corporations. Finally, we construct general linear regression models and spatial regression models for them, and derive meaningful socioeconomic variables that explain their location distribution. The results of this study could provide basic data for regional planning of national and local governments that activate local economies as well as job creation.

A Sampling Stochastic Linear Programming Model for Coordinated Multi-Reservoir Operation (저수지군 연계운영을 위한 표본 추계학적 선형 계획 모형)

  • Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Jae-Hee
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.685-688
    • /
    • 2004
  • 본 연구에서는 저수지군 연계운영을 위한 표본 추계학적 선형 계획(SSLP, Sampling Stochastic Linear Programming) 모형을 제안한다. 일반적 추계학적 모형은 과거 자료로부터 확률변수의 확률분포를 추정하고 이를 몇 개 구간으로 나누어 이산 확률 값을 산정하여 기댓값이 최대가 되는 운영방안을 도출하지만 저수지 유입량 예측시 고려되어야할 지속성 효과(Persistemcy Effect)와 유역간 또는 시점별 공분산 효과(The joint spatial and temporal correlations)를 반영하는데 많은 한계가 있다. 이를 극복하기 위하여 과거자료 자체를 유입량 시나리오로 적용하여 시${\cdot}$공간적 상관관계를 유지하는 표본 추계학적(Sampling Stochastic)기법을 바탕으로 Simple Recourse Model로 구성한 추계학적 선형 계획 모형을 제시한다. 이 모형은 미국 기상청(NWS)에서 발생 가능한 유입량의 시나리오를 예측하는 방법인 앙상블 유량 예측(ESP, Ensemble Streamflow Prediction)을 통한 시나리오를 적용함으로써 좀더 신뢰성 있는 저수지군 연계운영 계획을 도출 할 수 있을 것으로 기대된다.

  • PDF

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

Optimal Parallel Implementation of an Optimization Neural Network by Using a Multicomputer System (다중 컴퓨터 시스템을 이용한 최적화 신경회로망의 최적 병렬구현)

  • 김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.75-82
    • /
    • 1991
  • We proposed an optimal parallel implementation of an optimization neural network with linear increase of speedup by using multicomputer system and presented performance analysis model of the system. We extracted the temporal-and the spatial-parallelism from the optimization neural network and constructed a parallel pipeline processing model using the parallelism in order to achieve the maximum speedup and efficiency on the CSP architecture. The results of the experiments for the TSP using the Transputer system, show that the proposed system gives linear increase of speedup proportional to the size of the optimization neural network for more than 140 neurons, and we can have more than 98% of effeciency upto 16-node system.

  • PDF