• Title/Summary/Keyword: Spatial linear model

Search Result 285, Processing Time 0.028 seconds

A Study on Network Hierarchy Model which uses a Dynamic Segmentation Technique (동적 분할 기법을 이용한 네트워크 계층 모델에 관한 연구)

  • Joo, Yong-Jin;Lee, Yong-Ik;Moon, Kyung-Ky;Park, Soo-Hong
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.245-260
    • /
    • 2006
  • A practical use of the location information and user requirement are increased in a mobile environment which supports the portability. And Various service which GIS is related with a Spatial DB have been processed. Generally, logical relation of a traffic network which organizes the Road DB uses a basic node-link structure. In this way, Designed structure can not be flexible at various model apply and are not efficient with a database retrieval in a maintenance management side. In this research, We supplement with the problem of a existing network model and the limitation of the building through the design of a network model which uses dynamic segmentation. And we tried to implement efficient hierarchy model at the retrieval of the network and presentation. Designed model supports a stage presentation of various level and a hierarchy entity relation and We are expected to supplement a network spatial modelling function which the GIS has.

  • PDF

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

Motion estimation method using multiple linear regression model (다중선형회귀모델을 이용한 움직임 추정방법)

  • 김학수;임원택;이재철;이규원;박규택
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.98-103
    • /
    • 1997
  • Given the small bit allocation for motion information in very low bit-rate coding, motion estimation using the block matching algorithm(BMA) fails to maintain an acceptable level of prediction errors. The reson is that the motion model, or spatial transformation, assumed in block matching cannot approximate the motion in the real world precisely with a small number of parameters. In order to overcome the drawback of the conventional block matching algorithm, several triangle-based methods which utilize triangular patches insead of blocks have been proposed. To estimate the motions of image sequences, these methods usually have been based on the combination of optical flow equation, affine transform, and iteration. But the compuataional cost of these methods is expensive. This paper presents a fast motion estimation algorithm using a multiple linear regression model to solve the defects of the BMA and the triange-based methods. After describing the basic 2-D triangle-based method, the details of the proposed multiple linear regression model are presented along with the motion estimation results from one standard video sequence, representative of MPEG-4 class A data. The simulationresuls show that in the proposed method, the average PSNR is improved about 1.24 dB in comparison with the BMA method, and the computational cost is reduced about 25% in comparison with the 2-D triangle-based method.

  • PDF

Development of a Model Combining Covariance Matrices Derived from Spatial and Temporal Data to Estimate Missing Rainfall Data (공간 데이터와 시계열 데이터로부터 유도된 공분산행렬을 결합한 강수량 결측값 추정 모형)

  • Sung, Chan Yong
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.303-308
    • /
    • 2013
  • This paper proposed a new method for estimating missing values in time series rainfall data. The proposed method integrated the two most widely used estimation methods, general linear model(GLM) and ordinary kriging(OK), by taking a weighted average of covariance matrices derived from each of the two methods. The proposed method was cross-validated using daily rainfall data at thirteen rain gauges in the Hyeong-san River basin. The goodness-of-fit of the proposed method was higher than those of GLM and OK, which can be attributed to the weighting algorithm that was designed to minimize errors caused by violations of assumptions of the two existing methods. This result suggests that the proposed method is more accurate in missing values in time series rainfall data, especially in a region where the assumptions of existing methods are not met, i.e., rainfall varies by season and topography is heterogeneous.

Application of Practical Dispersion-Correction Scheme for Propagation of Tsunami - Sokcho Harbor (지진해일 전파특성을 고려한 실용적인 분산보정 기법의 적용 - 속초항)

  • Choi, Moon-Kyu;Lee, Uk-Han;Lee, Sung-Jae;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.431-434
    • /
    • 2008
  • Pratical dispersion-correction scheme is applicated to simulate the distant propagation of tsunami. This scheme is based on the leap-frog finite difference scheme for the linear shallow-water equations. The new scheme has the advantage of using the constant spatial grid size and time step size even in area of variable depths. And this new model constructed by using the 2nd upwind scheme, dynamic linking method, and staggered grid system. This model is simulated to near Sokcho harbor about The Central East Sea Tsunami in 1983. And this result is compared to tide gage and result of former model.

  • PDF

Taxi-demand forecasting using dynamic spatiotemporal analysis

  • Gangrade, Akshata;Pratyush, Pawel;Hajela, Gaurav
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.624-640
    • /
    • 2022
  • Taxi-demand forecasting and hotspot prediction can be critical in reducing response times and designing a cost effective online taxi-booking model. Taxi demand in a region can be predicted by considering the past demand accumulated in that region over a span of time. However, other covariates-like neighborhood influence, sociodemographic parameters, and point-of-interest data-may also influence the spatiotemporal variation of demand. To study the effects of these covariates, in this paper, we propose three models that consider different covariates in order to select a set of independent variables. These models predict taxi demand in spatial units for a given temporal resolution using linear and ensemble regression. We eventually combine the characteristics (covariates) of each of these models to propose a robust forecasting framework which we call the combined covariates model (CCM). Experimental results show that the CCM performs better than the other models proposed in this paper.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

A Study of Developing Variable-Scale Maps for Management of Efficient Road Network (효율적인 네트워크 데이터 관리를 위한 가변-축척 지도 제작 방안)

  • Joo, Yong Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.143-150
    • /
    • 2013
  • The purpose of this study is to suggest the methodology to develop variable-scale network model, which is able to induce large-scale road network in detailed level corresponding to small-scale linear objects with various abstraction in higher level. For this purpose, the definition of terms, the benefits and the specific procedures related with a variable-scale model were examined. Second, representation level and the components of layer to design the variable-scale map were presented. In addition, rule-based data generating method and indexing structure for higher LoD were defined. Finally, the implementation and verification of the model were performed to road network in study area (Jeju -do) so that the proposed algorithm can be practical. That is, generated variable scale road network were saved and managed in spatial database (Oracle Spatial) and performance analysis were carried out for the effectiveness and feasibility of the model.

An Orbit Robust Control Based on Linear Matrix Inequalities

  • Prieto, D.;Bona, B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.454-459
    • /
    • 2004
  • This paper considers the problem of satellite's orbit control and a solution based in Linear Matrix Inequalities (LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering of the Earth gravity field with high accuracy (less than 10${\mu}m$/${\mu}m$) and spatial resolution (better than 100km). In order to meet these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.

  • PDF

A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm (Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구)

  • 김대성;조영욱;한동엽;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF