• Title/Summary/Keyword: Spatial linear model

Search Result 285, Processing Time 0.024 seconds

Analysis on Factors Relating to External Medical Service Use of Health Insurance Patients Using Spatial Regression Analysis (공간효과분석을 이용한 건강보험 환자 관외 의료이용도와 관련된 요소분석)

  • Roh, Yun Ho
    • Health Policy and Management
    • /
    • v.23 no.4
    • /
    • pp.387-396
    • /
    • 2013
  • Background: The purpose of this study was to analyze the association between areas of Korea Train Express (KTX) region and external medical service use in Korean society using spatial statistical model. Methods: The data which was used in this study was extracted from 2011 regional health care utilization statistics and health insurance key statistics from National Health Insurance Corporation. A total spatial units of 229 districts (si-gun-gu) were included in this study and spatial area was all parts of the country excepted Jeju, Ulleungdo island. We conducted Kruskal-Wallis test, correlation, Moran's I and hot-spot analysis. And after, ordinary linear regression, spatial lag, spatial error analysis was performed in order to find factors which were associated with external medical service use. The data was processed by SAS ver. 9.1 and Geoda095i (windows). Results: Moran's I of health insurance patients' external medical service use was 0.644. Also, population density, Seoul region, doctor factors positively associated with health insurance patients' external medical service. In contrast, average age, health care organization per 100 thousand were negatively associated with health insurance patients' external medical service use. Conclusion: The finding of this study suggested that health insurance patient's external medical service use correlated for seoul region in korea. The study results imply the need for more attention medical needs in the region (si-gun-gu unit) for health insurance patients of seoul region. It is important to adapt strategy to activation of primary health care as well as enhancing public health institution for prevent leakage of patients to other areas.

A Study on 6D Pose Estimation Method Using Industrial Robot and 2D Vision (산업용 로봇과 2D 비전을 연동한 6D 자세 추정 방법 연구)

  • Yang-Su Jang;Kyung-Bae Jang
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.5
    • /
    • pp.19-26
    • /
    • 2024
  • This study presents and verifies an easy, fast, and relatively cost-effective method for 6D pose estimation using industrial robots for bin picking in the manufacturing sector. Specifically, it details a method involving the integration of industrial robots with 2D cameras to ① acquire multi-view images of objects and collect training data, ② select variables from the collected data and implement a linear regression model, and ③ apply the trained model to estimate, verify, and evaluate the 6D pose of objects on industrial robots. The proposed data collection method and implemented linear regression model demonstrated statistically significant results. The estimated 6D poses were validated against ground true values and evaluated in their application to industrial robots, confirming their validity. By using feature point information extracted from images instead of direct image inputs as inputs to the regression model, the data size was reduced, enabling direct embedding on the robot. This research approaches the problem of spatial coordinates in 3D from a data analysis perspective, rather than from geometrical or computer vision perspectives.

The Study for the Realtime Noise Simulation Integration Model Applied to Traffic Simulation and Spatial Modeling (교통 시뮬레이션과 공간 모델링 기법을 적용한 실시간 소음 시뮬레이션 통합 모델에 대한 연구)

  • Kang, Tae-Wook;Cho, Yoon-Ho;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.111-119
    • /
    • 2011
  • The noise prediction model, KRON-2006, in South Korea has been developed for obtaining the average noise level. The model is based on an outdoor sound propagation method based on ISO9613 and ASJ Model-1998 and supports the analysis of the linear noise source, such as highway, for obtaining Leq. Because of that, the model can't obtain Lmax, Lmin from the time series noise profile based on traffic at every moment. In order to address this problem, the real time noise prediction model based on traffic simulation using GIS model and algorithm is proposed. It can predict the vehicle point noise level based on vehicle type, speed generated from traffic simulation by using headway and obtain Lmax, Lmin as integrating the noise profile generated from it at every moment. An evalution of the noise prediciton model using field measurements finds good agreement between predicted and measured noise levels at 1m, 8m, 15m from curb of the near side lane.

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

Determination of Physical Camera Parameters from DLT Parameters (직접선형변환 매개변수로부터 물리적 사진기 매개변수의 산정)

  • Jeong, Soo;Lee, Chang-No;Oh, Jae-Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.39-43
    • /
    • 2005
  • In this study, we analyzed the accuracy of the conversion from DLT parameters to physical camera parameters and optimized the use of DLT model for non-metric cameras in photogrammetric tasks. Using the simulated data, we computed two sets of physical camera parameters from DLT parameters and Bundle adjustment for various cases. Comparing two results based on the RMSE values of check points, we optimized the arrangement of GCPs for DLT.

  • PDF

Spatial Variability for Particle Size Distribution of Two Soils -II. Fitting Variogram Models and Kriging (토양(土壤)의 입경분포(粒徑分布)에 대(對)한 공간변이성(空間變異性) 분석(分析) -II. 입경공간변이성(粒徑空間變異性)의 Variogram 적합(適合)과 Kriging)

  • Park, Cang-Seo;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.319-324
    • /
    • 1984
  • Spatial variability of sand, silt, and clay contents on Hwadong SiCL and Jungdong SL was studied by using geostatistical concept. The measurements were made within a $33{\times}14m^2$ area at the nodes of 2 by 2m grids. The validity of all assumptions (stationarity, variogram models, etc.) was proved by Jack-knifing procedure and frequency distribution performed on the original data grids. The variogram of sand content on Hwadong SiCL was different from the linear model and that of clay content of Jungdong SL the linear and the spherical model in calculation of both kriged values and kriged variances in identification of its choice for simplicity.

  • PDF

A Comparitive Study on the Shear Buckling Characteristics of Trapezoidal and Sinusoidal Corrugated Steel Plate Considering Initial Imperfection (제형 및 사인형 주름 강판의 초기 불완전 형상을 고려한 전단 좌굴 특성 비교)

  • Seo, Geonho;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • This paper conducted a comparative analysis of the shear buckling characteristics of trapezoidal and sinusoidal corrugated steel plates considering of their initial imperfection. Initial imperfection refers to the state where the shape of the corrugated plate is initially not perfect. As such, an initially imperfect shape was assumed using the eigen buckling mode. To calculate the buckling stress of corrugated steel plates, the linear buckling analysis used a boundary condition which was applied to the plate buckling analysis. For the comparison of trapezoidal and sinusoidal corrugation, the shape parameters were assumed using the case where the length and slope of each corrugation were the same, and the initial imperfection was considered to be from 0.1% to 5% based on the length of the steel plate. Here, for the buckling analysis, ANSYS, a commercial FEA program, was used. From the results of buckling analysis, the effect of overall initial imperfection showed that the larger the initial imperfection, the lower the buckling stress. However, in the very thin model, interaction or local buckling was dominant in the perfect shape, and in this case, the buckling stress did not decrease. Besides, the sinusoidal model showed higher buckling stress than the trapezoidal one, and the two corrugation shapes decreased in a similar way.

Physical Modeling of Plucked String Based on Fixed Spatial Sampling Interval (고정된 공간 축 샘플링 간격을 적용한 뜯는 현악기의 현에 관한 물리적 모델링)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In physical modeling of plucked string instruments, the vibration of a string is typically simulated by the linear system. Currently the Digital Waveguides of J.O.Smith[1] are widely used to get a high quality sound of the plucked string instrument. He used the wave equation to derive the Digital Waveguides and emphasized the time variable. In this thesis, new model of plucked string is proposed to improve the sound quality emphasizing the spatial variable of the wave equation. In our model, we used the fixed sampling interval which is not dependent on the speed of the wave. So we could get more detailed description of wave movement by the time variable. As a result, the new model could produce a higher quality sound of plucked string instrument.

  • PDF

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

Estimation of surface nitrogen dioxide mixing ratio in Seoul using the OMI satellite data (OMI 위성자료를 활용한 서울 지표 이산화질소 혼합비 추정 연구)

  • Kim, Daewon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Yang, Jiwon;Ryu, Jaeyong;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2017
  • We, for the first time, estimated daily and monthly surface nitrogen dioxide ($NO_2$) volume mixing ratio (VMR) using three regression models with $NO_2$ tropospheric vertical column density (OMIT-rop $NO_2$ VCD) data obtained from Ozone Monitoring Instrument (OMI) in Seoul in South Korea at OMI overpass time (13:45 local time). First linear regression model (M1) is a linear regression equation between OMI-Trop $NO_2$ VCD and in situ $NO_2$ VMR, whereas second linear regression model (M2) incorporates boundary layer height (BLH), temperature, and pressure obtained from Atmospheric Infrared Sounder (AIRS) and OMI-Trop $NO_2$ VCD. Last models (M3M & M3D) are a multiple linear regression equations which include OMI-Trop $NO_2$ VCD, BLH and various meteorological data. In this study, we determined three types of regression models for the training period between 2009 and 2011, and the performance of those regression models was evaluated via comparison with the surface $NO_2$ VMR data obtained from in situ measurements (in situ $NO_2$ VMR) in 2012. The monthly mean surface $NO_2$ VMRs estimated by M3M showed good agreements with those of in situ measurements(avg. R = 0.77). In terms of the daily (13:45LT) $NO_2$ estimation, the highest correlations were found between the daily surface $NO_2$ VMRs estimated by M3D and in-situ $NO_2$ VMRs (avg. R = 0.55). The estimated surface $NO_2$ VMRs by three modelstend to be underestimated. We also discussed the performance of these empirical modelsfor surface $NO_2$ VMR estimation with respect to otherstatistical data such asroot mean square error (RMSE), mean bias, mean absolute error (MAE), and percent difference. This present study shows a possibility of estimating surface $NO_2$ VMR using the satellite measurement.