• Title/Summary/Keyword: Spatial imagery

Search Result 598, Processing Time 0.023 seconds

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.

A Study on Land Cover Map of UAV Imagery using an Object-based Classification Method (객체기반 분류기법을 이용한 UAV 영상의 토지피복도 제작 연구)

  • Shin, Ji Sun;Lee, Tae Ho;Jung, Pil Mo;Kwon, Hyuk Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.25-33
    • /
    • 2015
  • The study of ecosystem assessment(ES) is based on land cover information, and primarily it is performed at the global scale. However, these results as data for decision making have a limitation at the aspects of range and scale to solve the regional issue. Although the Ministry of Environment provides available land cover data at the regional scale, it is also restricted in use due to the intrinsic limitation of on screen digitizing method and temporal and spatial difference. This study of objective is to generate UAV land cover map. In order to classify the imagery, we have performed resampling at 5m resolution using UAV imagery. The results of object-based image segmentation showed that scale 20 and merge 34 were the optimum weight values for UAV imagery. In the case of RapidEye imagery;we found that the weight values;scale 30 and merge 30 were the most appropriate at the level of land cover classes for sub-category. We generated land cover imagery using example-based classification method and analyzed the accuracy using stratified random sampling. The results show that the overall accuracies of RapidEye and UAV classification imagery are each 90% and 91%.

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

The Reconstruction of topographical data using Height Sensitivity in SAR Interferometry (레이다 간섭기법에서 고도민감도를 활용한 지형정보 복원)

  • 김병국;정도찬
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • Nowadays, SAR Interferometry is actively being studied as a new technique in topographic mapping using satellite imagery. It extracts height values using phase information derived by two SAR imageries covering same areas. Unlike when using SPOT imagery, it is not affected by atmospheric conditions and time. So to speak, we can say that SAR Interferometry is flexible in imagery acquisitions and can get height data economically over wide area. So, it is expected that SAR Interferometry will be widely using in GIS applications. But, in some area occurring geometric distortion, height data are misjudged or not extracted depending on phase unwrapping algorithms. IN the case of ERS tandem data, the accuracy of height data was worst in mountain area. It is the because of the short incidence angle resulted in layover effect. Of the phase unwrapping algorithms, path-following was better in height accuracy but could not get data in layover area. In this area, we could get height data using Height Sensitivity. In concludion, we could get DEM that maintained the accuracy of path-following method and have overall data across imagery.

  • PDF

A Study of Drought Susceptibility on Cropland Using Landsat ETM+ Imagery (Landsat ETM+ 영상을 활용한 경작지역내 가뭄민감도의 연구)

  • 박은주;성정창;황철수
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • This research investigated the 2001 spring drought on croplands in South Korea using satellite imagery. South Korea has suffered from spring droughts almost every year. Meteorological indices have been used for monitoring droughts, however they don't tell the local severity of drought. Therefore, this research aimed at detecting the local, spatial pattern of drought severity at a cropland level. This research analyzed the agricultural drought using the wetness of remotely sensed pixels that affects the growth of early crops significantly in the spring. This research, specifically, analyzed the spatial distribution and severity of drought using the tasseled cap transformation and topographical factors. The wetness index from the tasseled cap transformation of Landsat 7 ETM/sub +/ imagery was very useful for detecting the 2001 spring drought susceptibility in agricultural croplands. Especially, the wetness values smaller than -0.2 were identified as the croplands that were suffering from serious water deficit. Using the water deficit pixels, drought severity was modeled finally.

Semi-Automated Extraction of Geographic Information using KOMPSAT 2 : Analyzing Image Fusion Methods and Geographic Objected-Based Image Analysis (다목적 실용위성 2호 고해상도 영상을 이용한 지리 정보 추출 기법 - 영상융합과 지리객체 기반 분석을 중심으로 -)

  • Yang, Byung-Yun;Hwang, Chul-Sue
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.282-296
    • /
    • 2012
  • This study compared effects of spatial resolution ratio in image fusion by Korea Multi-Purpose SATellite 2 (KOMPSAT II), also known as Arirang-2. Image fusion techniques, also called pansharpening, are required to obtain color imagery with high spatial resolution imagery using panchromatic and multi-spectral images. The higher quality satellite images generated by an image fusion technique enable interpreters to produce better application results. Thus, image fusions categorized in 3 domains were applied to find out significantly improved fused images using KOMPSAT 2. In addition, all fused images were evaluated to satisfy both spectral and spatial quality to investigate an optimum fused image. Additionally, this research compared Pixel-Based Image Analysis (PBIA) with the GEOgraphic Object-Based Image Analysis (GEOBIA) to make better classification results. Specifically, a roof top of building was extracted by both image analysis approaches and was finally evaluated to obtain the best accurate result. This research, therefore, provides the effective use for very high resolution satellite imagery with image interpreter to be used for many applications such as coastal area, urban and regional planning.

  • PDF

A Study of on the Forest Map Update Using Orthorecified High Resolution Satellite Imagery Data (고해상도 정사위성영상을 이용한 임상도 수정에 관한 연구)

  • 성천경;조정호
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.127-135
    • /
    • 2004
  • The operational availability of multispectral high-resolution satellite imagery, opens up new possibilities for updating forest map. Compared with information acquired by traditional methods (Panchromatic Aerial Photo), these data of for a number of advantages. In this study used 1m spatial resolution and 4 multispectral band, which are capability to update forest map of kind of tree. From the result of this study, First, the visual analysis of the colour composites of the multispectral data made it possible to distinguish some species(conifer, broad-leaved, un-stocked, arable land). Second, forest map and orthorectiffd satellite imagery are not match in the boundary of forest, therefore work have some troubles in the modification of forest map. Third, the distinguish from age-class, girth-class and density are much need experience and skillful about sample such as aerial photo.

  • PDF

A Study on The Need and Direction for Development of Imagery Transmission Format Standard (영상유통포맷 표준 개발 필요성과 방향에 대한 연구)

  • Lim, Seong-Ho;Park, Wan-Yong;Cho, Jae-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • As digital images combined with various types of information became popular, the development of transmission format standard for effective application of imageries is demanded. The purpose of the format standard is to provide a universal format that facilitates the exchange of images and related information. In this paper, we found optimal requirements of imagery transmission format standard after reviewing current state of both military and commercial products and studying functions of various types of format standards including NITF (National Imagery Transmission Format). In addition, future research direction of the imagery transmission format standard that complies with current trend of high-resolution and mass storage imagery data is proposed.

Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG (동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴)

  • Park, Sang-Hoon;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.587-594
    • /
    • 2017
  • Recently, motor imagery electroencephalogram(EEG) based Brain-Computer Interface(BCI) systems have received a significant amount of attention in various fields, including medicine and engineering. The Common Spatial Pattern(CSP) algorithm is the most commonly-used method to extract the features from motor imagery EEG. However, the CSP algorithm has limited applicability in Small-Sample Setting(SSS) situations because these situations rely on a covariance matrix. In addition, large differences in performance depend on the frequency bands that are being used. To address these problems, 4-40Hz band EEG signals are divided using nine filter-banks and Regularized CSP(R-CSP) is applied to individual frequency bands. Then, the Mutual Information-Based Individual Feature(MIBIF) algorithm is applied to the features of R-CSP for selecting discriminative features. Thereafter, selected features are used as inputs of the classifier Least Square Support Vector Machine(LS-SVM). The proposed method yielded a classification accuracy of 87.5%, 100%, 63.78%, 82.14%, and 86.11% in five subjects("aa", "al", "av", "aw", and "ay", respectively) for BCI competition III dataset IVa by using 18 channels in the vicinity of the motor area of the cerebral cortex. The proposed method improved the mean classification accuracy by 16.21%, 10.77% and 3.32% compared to the CSP, R-CSP and FBCSP, respectively The proposed method shows a particularly excellent performance in the SSS situation.