DOI QR코드

DOI QR Code

A Study on Land Cover Map of UAV Imagery using an Object-based Classification Method

객체기반 분류기법을 이용한 UAV 영상의 토지피복도 제작 연구

  • Shin, Ji Sun (Ecosystem Services Research, Bureau of Ecological Conservation Research, National Institute of Ecology) ;
  • Lee, Tae Ho (Ecosystem Services Research, Bureau of Ecological Conservation Research, National Institute of Ecology) ;
  • Jung, Pil Mo (Ecosystem Services Research, Bureau of Ecological Conservation Research, National Institute of Ecology) ;
  • Kwon, Hyuk Soo (Ecosystem Services Research, Bureau of Ecological Conservation Research, National Institute of Ecology)
  • 신지선 (국립생태원 생태보전본부 생태계서비스연구부) ;
  • 이태호 (국립생태원 생태보전본부 생태계서비스연구부) ;
  • 정필모 (국립생태원 생태보전본부 생태계서비스연구부) ;
  • 권혁수 (국립생태원 생태보전본부 생태계서비스연구부)
  • Received : 2015.10.12
  • Accepted : 2015.11.27
  • Published : 2015.12.31

Abstract

The study of ecosystem assessment(ES) is based on land cover information, and primarily it is performed at the global scale. However, these results as data for decision making have a limitation at the aspects of range and scale to solve the regional issue. Although the Ministry of Environment provides available land cover data at the regional scale, it is also restricted in use due to the intrinsic limitation of on screen digitizing method and temporal and spatial difference. This study of objective is to generate UAV land cover map. In order to classify the imagery, we have performed resampling at 5m resolution using UAV imagery. The results of object-based image segmentation showed that scale 20 and merge 34 were the optimum weight values for UAV imagery. In the case of RapidEye imagery;we found that the weight values;scale 30 and merge 30 were the most appropriate at the level of land cover classes for sub-category. We generated land cover imagery using example-based classification method and analyzed the accuracy using stratified random sampling. The results show that the overall accuracies of RapidEye and UAV classification imagery are each 90% and 91%.

생태계 평가 연구는 대부분 토지피복 정보를 기반으로 하여 연구되며, 주로 전지구적인 범위로 이루어져 왔다. 그러나 이러한 결과들을 지역적 현안에 대한 의사결정 자료로 활용하기에는 범위와 스케일에 있어서 활용성이 떨어지는 측면이 있다. 지역적 스케일에 활용 가능한 토지피복 정보로는 환경부에서 제작된 토지피복도가 있지만 시각판독법(On Screen Digitizing Method)의 한계와 시기별, 지역별 차이로 인해 자료 활용에 제한이 있다. 본 연구는 객체기반 분류기법을 이용하여 UAV 영상의 중분류 토지피복도를 제작하는데 목적이 있다. 이를 위하여 고해상도 UAV 영상을 5m 공간해상도로 재배열한 후 영상분할을 수행한 결과 scale 20, merge 34가 최적의 가중치 값으로 나타났으며, RapidEye 영상 분할에서는 scale 30, merge 30이 중분류 수준에 적절한 가중치 값으로 나타났다. 토지피복도는 예제기반분류를 사용하여 제작하였고, 층화추출법을 사용하여 정확도 검증을 수행하였다. 그 결과, RapidEye 분류 영상은 90%, UAV 분류 영상은 91%로 양호한 토지피복분류 결과가 도출되었다.

Keywords

References

  1. Bernstein, L. S., Adler-Golden, S. M. and Sundberg, R. L., 2005, Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multiand hyperspectral imagery, Proc. of SPIE, SPIE, Vol. 5806, pp. 668-678.
  2. Burkhard, B., Kandziora, M., Hou, Y. and Muller, F., 2014, Ecosystem Service Potentials, Flows and Demands-Concepts for Spatial Localisation, Indication and Quantification, Landscape online, Vol. 34, pp. 1-32.
  3. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P. and van den Belt, M., 1997, The value of the world's ecosystem services and natural capital, Nature, Vol. 387, pp. 253-260. https://doi.org/10.1038/387253a0
  4. Dieter H., Werner Z., Gunter S. and Peter S., 2005. Monitoring of gas pipelines - a civil UAV application, Aircraft Engineering and Aerospace Technology, Vol. 77, pp. 352-360. https://doi.org/10.1108/00022660510617077
  5. Daily, G. C. and Matson, P. A., 2008, Ecosystem services: From theory to implementation, Proc. of the National Academy of Sciences of the USA, National Academy of Sciences, Vol. 105, No. 28, pp. 9455-9456.
  6. Duro, D. C., Franklin, S. E. and Dube, M. G., 2012, A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery, Remote Sensing of Environment, Vol. 118, pp. 259-272. https://doi.org/10.1016/j.rse.2011.11.020
  7. Egoh, B., Reyers, B., Rouget, M., Richardson, D. M., Le Matire, D. C. and can Jaarsveld, A. S., 2008, Mapping ecosystem services for planning and management, Agriculture, Ecosystems and Environment, Vol. 127, pp. 135-140. https://doi.org/10.1016/j.agee.2008.03.013
  8. Eitel, J. U. H., Vierling, L. A., Livak, M. E., Long, D. S., Schulthess, U., Ager, A., Krofcheck, D. J. and Stoscheck, L., 2011, Broadband, red-edge information from satellite improves early stress detection in a New Mexico conifer woodland, Remote Sensing of Environment, Vol. 115, pp. 640-3646.
  9. Fiella, I. and Penueals, J., 1994, The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status, International Journal of Remote Sensing, Vol. 15, pp. 1459-1470. https://doi.org/10.1080/01431169408954177
  10. Fuyi, T., Chun, B. B., Mat Jafri, M. Z., San, L. H., Abdullah, K. and Tahrin, M., 2012. Land cover/use mapping using multi-band imageries captured by Cropcam Unmanned Aerial Vehicle Autopilot(UAV) over Penang Island, Malaysia, Proc. of SPIE, SPIE, Vol. 8540, 85400S, pp.1-6.
  11. Herwitz, S. R., John, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E. and Brass, J. A., 2004. Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support, Computers and Electronics in Agriculture, Vol. 44, pp. 49-61. https://doi.org/10.1016/j.compag.2004.02.006
  12. Hassan, F. M., Lim, H. S. and Mat Jafri, M. Z., 2011, CropCam UAV for Land Use/Land Cover mapping over Penang Island, Malaysia, Pertanika Journal of Science & Technology, Vol. 19, No. S, pp. 69-76.
  13. Jin, X., 2012, Segmentation-based image processing system. U.S. Patent 8,260,048, filed Nov. 14, 2007, and issued Sept. 4, 2012.
  14. Jung, K. S., Kim, Y. S. and Oh, S. R., 2015, Technical Development of Flood Damage Estimation using UAV, Magazine of Korea water resources association, Vol. 48, No. 1, pp. 51-59.
  15. Kim, H. O. and Yeom, J. M., 2012, A study on object-based image analysis methods for land cover classification in agricultural areas, Journal of the Korean Association of Geographic Information Studies, Vol. 15, No. 4, pp. 26-41. https://doi.org/10.11108/kagis.2012.15.4.026
  16. Kim, S. M., 2014, Study of the UAV for Application Plans and Landscape Analysis, Korea Institute of Traditional Landscape Architecture, Journal of the Korean Institute of Traditional Landscape Architecture, Vol. 32, No. 3, pp. 213-220. https://doi.org/10.14700/KITLA.2014.32.3.213
  17. Lee, H. J., Ru, J. H. and Yu, Y. G., 2010, Extracting High Quality Thematic Information by Using High-Resolution Satellite Imagery, Journal of The Korean Society for GeoSpatial Information System, Vol. 18, No. 1, pp. 73-81.
  18. Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D. r., Chan, K. M. A., Daily, G. C., Goldstein, J., Kareiva, P. M., Lonsdorf, E., Naidoo, R., Ricketts, T. H. and Shaw, M. R., 2009, Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales, Frontiers in Ecology and the Environment, Vol. 7, No. 1, pp. 4-11. https://doi.org/10.1890/080023
  19. Na, H. S. and Lee, J. S., 2014, Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do -, Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 2, pp. 121-135. https://doi.org/10.11108/kagis.2014.17.2.121
  20. Na, S. I., Baek, S. C., Hong, S. Y., Lee, K. D. and Jang, K. C., 2015, A Study on the Application of UAV for the Onion and Garlic Growth Monitoring, Proc. of The Korean Society of Soil Science and Fertilizer, Korean Society of Soil Sciences and Fertilizer, p. 225.
  21. Park, J. J., Ku, J. Y. and Kim, B. S., 2007, Improvement of the Level-2 Land Cover Map with Satellite Image, The Journal of GIS Association of Korea, Vol. 15, No. 1, pp. 67-80.
  22. Redding, N. J., Crisp, D. J., Tang, D. and Newsam, G. N., 1999. An efficient algorithm for Mumfordsegmentation and its application to SAR imagery, in 'Digital Image Computing : Techniques & Applications (DICTA '99), pp. 35-41.
  23. Shin, J. S., Lee T. H., Jung P. M., Kwon, H. S. and Andy S. Choi, 2015, A Study on UAV Application for Mapping and Assessment of Ecosystem Services, Proc. of The Korean Society of GeoSpatial Information System, Korean Society for Geospatial Information System, pp. 163-164.
  24. Tallis, H. and Polasky, S., 2009, Mapping and Valuing Ecosystem Services as an Approach for Conservation and Natural-Resource Management, Annals of the New York Academy of Sciences, Vol. 1162, pp. 265-283. https://doi.org/10.1111/j.1749-6632.2009.04152.x
  25. Willemen, L., Verburg, P. H., Hein, L. and can Mensvoort, M. E. F., 2008, Spatial characterization of landscape functions, Landscape and Urban Planning, Vol. 88, pp. 34-43. https://doi.org/10.1016/j.landurbplan.2008.08.004
  26. Zhu, C., Luo, J., Ming, D., Shen, Z. and Li. J., 2012. Method for generating SPOT natural-colour composite images based on spectrum machine learning, International Journal of Remote Sensing, Vol. 33, No. 4, pp. 1309-1324. https://doi.org/10.1080/01431161.2010.550652

Cited by

  1. Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis pp.1366-5901, 2017, https://doi.org/10.1080/01431161.2016.1277043
  2. Evaluating the potential of multi-view data extraction from small Unmanned Aerial Systems (UASs) for object-based classification for Wetland land covers pp.1943-7226, 2018, https://doi.org/10.1080/15481603.2018.1495395
  3. UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes vol.35, pp.1, 2015, https://doi.org/10.7848/ksgpc.2017.35.1.11
  4. UAV와 객체기반 영상분석 기법을 활용한 토지피복 분류 - 충청남도 서천군 마서면 일원을 대상으로 - vol.20, pp.1, 2015, https://doi.org/10.11108/kagis.2017.20.1.001
  5. 딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용 vol.33, pp.6, 2017, https://doi.org/10.7780/kjrs.2017.33.6.2.3
  6. U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 - vol.37, pp.3, 2015, https://doi.org/10.7780/kjrs.2021.37.3.4
  7. UAV-Based Land Cover Classification for Hoverfly (Diptera: Syrphidae) Habitat Condition Assessment: A Case Study on Mt. Stara Planina (Serbia) vol.13, pp.16, 2021, https://doi.org/10.3390/rs13163272
  8. Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.3.9