• Title/Summary/Keyword: Spatial heterogeneity

Search Result 203, Processing Time 0.026 seconds

Application of EFDC Model to an Agricultural Reservoir for Assessing the Effect of Point Source Bypassing (농업용 저수지의 점오염원 바이패스 효과 평가를 위한 EFDC 모델의 적용)

  • Kim, Dong Min;Park, Hyung Seok;Chung, Se Woong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.9-21
    • /
    • 2016
  • Agricultural reservoirs in Korea have been recognized as an emerging resource for recreational and cultural activities for residents. However, most of the reservoirs are eutrophic and showing high level of contamination with nuisance algal bloom and offensive odor during the summer. For better management and restoration of the reservoirs' water quality, scientific modeling approaches could be used to diagnose the problems and evaluate the efficacy of alternative control measures. The objectives of this study were to validate the performance of a three-dimensional (3D) hydrodynamic and water quality model (Environmental Fluid Dynamics Code, EFDC) for a eutrophic agricultural reservoir and assess the effect of bypassing of the effluent from a wastewater treatment plant on the reservoir water quality. The 3D model successfully simulated the temporal variations of water temperature, DO, TOC, nitrogen and phosphorus species and Chl-a observed in 2014 and also captured their spatial heterogeneity in the reservoir. The simulation results indicated that the point source bypassing may reduce the T-N and T-P concentrations of the reservoir by 6.6 ~ 8.2 %, and 1.7 ~ 16.8 %, respectively. The bypassing, however, showed a marginal effect on the control of TOC due to the increased algal biomass associated with the increased water retention time after bypassing as well as the lower TOC level of the effluent compared to the ambient reservoir water.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

A Numerical Prediction of Nutrient circulation in Hakata Bay by Sediment-Water Ecological Model(SWEM) (수-저질생태계모델에 의한 박다만의 물질순환예측)

  • Lee In-Cheol;Ryu Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.3-14
    • /
    • 2001
  • In order to predict nutrient circulation in Hakata bay, we have developed an ecosystem model named the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton. This model was applied to prevent eutrophication in Hakata bay, located in western Japan. The calculated results of the tidal currents by the hydrodynamic model showed good agreement with the observed currents. Moreover, SWEM simulated reasonably well the seasonal variations of water quality, and reproduced spatial heterogeneity of water quality in the bay, observed in the field. According to the simulation of phosphorus circulation at the head of the bay, it was predicted that the regeneration process of phosphorus across the sediment-water interface had a strong influence on the water quality of the bay.

  • PDF

Monitoring suspended sediment distribution using Landsat TM/ETM+ data in coastal waters of Seamangeum, Korea

  • Min Jee-Eun;Ryu Joo-Hyung;P Shanmugam;Ahn Yu-Hwan;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.340-343
    • /
    • 2004
  • Since the tide embankment construction started in 1991, the coastal environment in and around the Saemangeum area has undergone changes rapidly, there is a need for monitoring the environmental change in this region. Owing to high temporal and spatial heterogeneity of the coastal ecosystem and processes as well as the expense with traditional filed sampling at discrete locations, satellite remote sensing measurements offer a unique perspective on mapping a large region simultaneously because of the synoptic and repeat coverage and that quantitative algorithms used for estimating constituents' concentration in the coastal environments. Thus, the main objectives of the present study are to analyze the retrieved Suspended Sediment (SS) pattern to predict changes after the commencement of the tide embankment construction work in 1991. This is accomplished with a series of the Landsat TM/ETM+ imagery acquired from 1985-2002 (a total of 18 imageries). Instead of a simple empirical algorithm, we implement an analytical SS algorithm, developed by Ahn et al. (2003), which is especially developed for estimating SS concentration (SSC) in Case-2 waters. The results show that there is a significant change in SS pattern, which is mainly influenced by the tide and tidal height after the construction of the embankment work. As the construction progressed, the distribution pattern of SS has greatly changed, and the rate of SS concentration in the gap area of the dyke of post-construction has significantly increased.

  • PDF

Vegetation Structure of the Kungae Reclaimed Wetland in a Coastal Lagoon of East Sea, Korea (동해안 석호에서 군개 간척습지의 식생 구조)

  • Kim, Ja-Ae;Jo, Gang-Hyeon;Lee, Hyo-Hye-Mi
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • We described the vegetation of a disturbed lagoon wetland in relation to water and soil environments in Kungae lagoon reclaimed 30 years ago. Water depth and soil organic matter showed a great spatial heterogeneity in Kungae wetland which was changed into a freshwater marsh by the dike construction. Detrended canonical correspondence analysis suggested that differences in vegetation structure were primarily the result of variation in water depth or microtopography and soil organic matter Various emergent vegetations were developed in the wetland: species such as Phragmites australis, Calamagrostis epigeios, Carex dispalata and Lythrum anceps in a wide area, hydrophyes such as Typha angustifolia and Scirpus tabernaemontani at the low elevation with deep water, ruderals such as Bidens frondosa and Persicaria perfoliata near upland with much soil organic matter and sand-dune vegetation such as Carex kobomugi, Diodia tens, Pinus thunbergii and Potentilla egedei var. groenlandica at the high elevation. These results suggest that development of a prototype for wetland restoration from vegetation analysis of other natural lagoons and restoration of natural water tables and hydrologic connections between the diked wetland and the sea are important in the disturbed Kungae wetland.

  • PDF

Estimation of groundwater inflow into an underground oil storage facility in granite

  • Wang, Zhechao;Kwon, Sangki;Qiao, Liping;Bi, Liping;Yu, Liyuan
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.1003-1020
    • /
    • 2017
  • Estimation of groundwater inflow into underground opening is of critical importance for the design and construction of underground structures. Groundwater inflow into a pilot underground storage facility in China was estimated using analytical equations, numerical modeling and field measurement. The applicability of analytical and numerical methods was examined by comparing the estimated and measured results. Field geological investigation indicated that in local scale the high groundwater inflows are associated with the appearance of open joints, fractured zone or dykes induced by shear and/or tensile tectonic stresses. It was found that 8 groundwater inflow spots with high inflow rates account for about 82% of the total rate for the 9 caverns. On the prediction of the magnitude of groundwater inflow rate, it was found that could both (Finite Element Method) FEM and (Discrete Element Method) DEM perform better than analytical equations, due to the fact that in analytical equations simplified assumptions were adopted. However, on the prediction of the spatial distribution estimation of groundwater inflow, both analytical and numerical methods failed to predict at the present state. Nevertheless, numerical simulations would prevail over analytical methods to predict the distribution if more details in the simulations were taken into consideration.

Population Allocation at the Building level for Micro-level Urban Simulation: A Case of Jeonju, Korea

  • Kim, Dohyung;Cho, Dongin
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.2
    • /
    • pp.223-239
    • /
    • 2020
  • It is important for urban planners and policy makers to understand complex, diverse urban demands and social structure, but this is not easy due to lack of data that represents the dynamics of residents at micro-geographical level. This paper explores how to create population data at at a micro-level by allocating population data to building. It attempted to allocate population data stored in a grid layer (100 meters by 100 meters) into a building footprint layer that represents the appearance of physical buildings. For the allocation, this paper describes a systemic approach that classifies grid cells into five prototypical patterns based on the composition of residential building types in a grid cell. This approach enhances allocation accuracy by accommodating heterogeneity of urban space rather than relying on the assumption of uniform spatial homogeneity of populations within an aerial unit. Unlike the methods that disaggregate population data to the parcel, this approach is more applicable to Asian cities where large multifamily residential parcels are common. However, it should be noted that this paper does not demonstrate the validity of the allocated population since there is a lack of the actual data available to be compared with the current estimated population. In the case of water and electricity, the data is already attached to an individual address, and hence, it can be considered to the purpose of the validation for the allocation. By doing so, it will be possible to identify innovative methods that create a population distribution dataset representing the comprehensive and dynamic nature of the population at the micro geographical level.

Spatial heterogeneity in macroinvertebrate density from Lake Hövsgöl, Mongolia

  • Hayford, Barbara;Goulden, Clyde;Boldgiv, Bazartseren
    • Journal of Species Research
    • /
    • v.2 no.2
    • /
    • pp.159-166
    • /
    • 2013
  • Typical of large, oligotrophic lakes, Lake H$\ddot{o}$vsg$\ddot{o}$l, Mongolia, exhibits complex morphometry which should support a spatially heterogeneous community of benthic macroinvertrates. The lake also exhibits a broad range of land uses. Based on the variation in land use and complex physical habitat of the lake (e.g. substrate variation and presence of affluent streams in bays), we asked two questions. First, does density of total benthic macroinvertebrates vary between different bays in Lake H$\ddot{o}$vsg$\ddot{o}$l? Second, does density of individual benthic taxa vary by bay? Samples collected in 1997, the last year for benthic sampling of the lake, were designed to test for variation in macroinvertebrate density between bays and can now be used to establish baseline variation in density for future studies. A total of 56 Ponar grab samples were analyzed from six bays in Lake H$\ddot{o}$vsg$\ddot{o}$l. Results of a general linear model analysis of variance showed that total density of macroinvertebrates varied only slightly between bays of the lake, but that most individual taxa showed significant variation between bays. Variation in density for most taxa was linked to substrate composition rather than other geographic or physical variables in the lake. Recent increases in grazing intensity and ecotourism along the shores should be managed to reduce the nutrient load into the lake to avoid impairment of the benthic biota of this unique, ancient ecosystem.

Estimation of Runoff Curve Number for Chungju Dam Watershed Using SWAT (SWAT을 이용한 충주댐 유역의 유출곡선지수 산정 방안)

  • Kim, Nam-Won;Lee, Jin-Won;Lee, Jeong-Woo;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1231-1244
    • /
    • 2008
  • The objective of this study is to present a methodology for estimating runoff curve number(CN) using SWAT model which is capable of reflecting watershed heterogeneity such as climate condition, land use, soil type. The proposed CN estimation method is based on the asymptotic CN method and particularly, it uses surface flow data simulated by SWAT. This method has advantages to estimate spatial CN values according to subbasin division and to reflect watershed characteristics because the calibration process has been made by matching the measured and simulated streamflows. Furthermore, the method is not sensitive to rainfall-runoff data since CN estimation is on a daily basis. The SWAT based CN estimation method is applied to Chungju dam watershed. The regression equation of the estimated CN that exponentially decays with the increase of rainfall is presented.

The Sex Determination Mechanisms in Maize: Cell Death, Cell Protection and Cell Cycle Arrest (옥수수 성 결정 메커니즘: 세포 사멸, 세포 방어, 세포주기 멈춤)

  • Kim, Jong-Cheol;Lee, Kyun-Oh
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.699-703
    • /
    • 2006
  • Maize (Zea mays L.) is a monoecious plant, which separates male (tassel) and female (ear) floret that evolved into increasing heterogeneity. In each floret, male or female, bears both one pistil and three stamens primodia before diverged to unisexual state. When diverged to tassel, pistil cell death occurs in the pistil primodium, which is mediated by TASSELSEED genes. In contrast, cell protection occurs in the ear pistil from TASSELSEED-mediated cell death, which is mediated by SILKLESS1 gene. On the other hand, cell cycle arrest occurred for a long time in the ear stamens and then the stamens eventually dye. The cell cycle regulating genes such as CYCLIN B and WEE1 are involved in this process. Furthermore, the temporal and spatial regulation of gibberellin biosynthesis may cause cell cycle block in arresting stamen cells. This review describes the cell death, cell protection, and cell cycle arrest mechanism during maize sex determination process at the molecular, cellular and developmental biology, and genetic levels.