• Title/Summary/Keyword: Spatial frequency

Search Result 1,447, Processing Time 0.027 seconds

Contrast Sensitivity as a Function of Spatial Frequency for 12 Year Old Child-Eye (눈의 공간주파수와 대비 민감도 함수(CSF) 특성에 대한 연구)

  • Kim, Yong Geun;Park, Sang-An
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.63-68
    • /
    • 1999
  • It was made of a chart by new method to be measured the contrast sensitivity for a spatial frequency, and the mean luminance of a lattice frequency was made to three forms of 25, 50, 75% and let it to be ready a CS value from 0 to $10^3$. As a result of measuring of the CS value for a spatial frequency on a target of 12 year old students, CS value decreased of according to down the average luminance value and also the peak position shift to low spatial frequency. The low visioned person decreased the CS value in side of high frequency or in space of total frequency. By the lattice adaptation, a measured CS value was decreased in circumstance regions of adapted space frequency.

  • PDF

A Comparative Analysis Study on Distance Contrast Sensitivities According to Progressive Lens Design (누진렌즈 디자인에 따른 원거리 대비감도 비교분석 연구)

  • Shin, Dong-Min;Kim, Soo-Hyun;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.241-246
    • /
    • 2013
  • Purpose: The aim of this study was a comparative analysis of the effect of distance contrast sensitivity when wearing free-form progressive lens and conventional progressive lens. Methods: The 20 subjects who do not have any ocular diseases were participated in this study. Contrast sensitivities at 5 different levels of spatial frequency were conducted by using FACT (Stereo Optical, USA). Results: Contrast sensitivity was measured for free-form progressive lens and conventional progressive lens in the order of right eye, left eye and binocular. Right/left/binocular contrast sensitivity values of the free-form progressive lenses compared to the conventional progressive lenses were higher 16%/17%/11% at A(1.5 cpd) of spatial frequency, 11%/5%/5% at B(3 cpd) of spatial frequency, 6%/6%/9% at C(6 cpd) of spatial frequency, 19%/16%/13% at D(12 cpd) of spatial frequency, 4%/3%/18% at E(18 cpd) of spatial frequency. Conclusions: In all the area of spatial frequency, distance contrast sensitivity values were measured highly on free-form progressive lens than on conventional progressive lens.

Full-color Non-hogel-based Computer-generated Hologram from Light Field without Color Aberration

  • Min, Dabin;Min, Kyosik;Park, Jae-Hyeung
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.409-420
    • /
    • 2021
  • We propose a method to synthesize a color non-hogel-based computer-generated-hologram (CGH) from light field data of a three-dimensional scene with a hologram pixel pitch shared for all color channels. The non-hogel-based CGH technique generates a continuous wavefront with arbitrary carrier wave from given light field data by interpreting the ray angle in the light field to the spatial frequency of the plane wavefront. The relation between ray angle and spatial frequency is, however, dependent on the wavelength, which leads to different spatial frequency sampling grid in the light field data, resulting in color aberrations in the hologram reconstruction. The proposed method sets a hologram pixel pitch common to all color channels such that the smallest blue diffraction angle covers the field of view of the light field. Then a spatial frequency sampling grid common to all color channels is established by interpolating the light field with the spatial frequency range of the blue wavelength and the sampling interval of the red wavelength. The common hologram pixel pitch and light field spatial frequency sampling grid ensure the synthesis of a color hologram without any color aberrations in the hologram reconstructions, or any loss of information contained in the light field. The proposed method is successfully verified using color light field data of various test or natural 3D scenes.

Comparison of Natural Frequency of Domestic and Foreign Long-spaned Structure (국내외 장스팬 구조물의 고유진동수 비교)

  • Yoon, Sung-Won;Park, Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.79-85
    • /
    • 2009
  • As a recent spatial structure have become long-spaned and light, stiffness of out-plane is reduced significantly. Due to this, it is necessary to calculate natural frequency correctly to check if structure is flexible or vortex-induced vibration is occurred. However, formula of frequency in domestic and foreign spatial structure has not been performed deeply. In this study, approximated formula obtained by eigenvalue analysis of seven domestic spatial structure is compared with two suggestions based on Japanese standard and formula by measurement of 28 spatial structure in Japan. Natural frequency of roof has a tendency to be reduced as the span of structure increases. Natural frequency of domestic structure is generally less than that of analysis and measurement of spatial structure in Japan. Therefore, it is confirm that roof of domestic spatial structure is relatively rather flexible than that of Japan.

  • PDF

Image Interpolation Using Multiple Neural Networks with Spatial Frequency Characteristic (공간 주파수 특성을 가지는 다중 신경 회로망을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.135-141
    • /
    • 2004
  • Image interpolation is an image enlargement method that calculates an empty pixel value using the information of given pixel values. Since a natural image is composed of various spatial frequency components, it is difficult for one method to interpolate pixels with various spatial frequencies. In this paper, we propose an image interpolation method using multiple neural networks with spatial frequency characteristic. Input image is segmented according to spatial frequency by local variance, and each segmented image is interpolated using neural network established for spatial frequency band. The proposed method is applied to line doubling that becomes an important part in image interpolation because of deinterlacing. In simulation the proposed algorithm shows the improved PSNR result compared with conventional algorithms and method using single neural network.

A Study on the relationship between natural frequency and span of Spatial Structure (대공간 구조물의 고유진동수와 스팬의 상관관계)

  • Yoon, Sung-Won;Park, Yong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.155-158
    • /
    • 2008
  • As the span of spatial structure is getting longer, the law frequency of the structure makes the wind-induced response much increased. However, there are lots of hardships to establish the economical structural systems due to the fact that an relative equation between the frequency and the span of the domestic spatial structures is not existed in the stage of the basic planning design. Therefore, among the large-span structures, this paper focused on the relationship between the frequency and the span of the world-cup stadium built in 2000s. The relative equation between the frequency and span is compared with the data measured in Japan. Moreover, we are willing to provide the basic study by suggesting the summary equation in this paper.

  • PDF

Practical coherency model suitable for near- and far-field earthquakes based on the effect of source-to-site distance on spatial variations in ground motions

  • Yu, Rui-Fang;Abduwaris, Abduwahit;Yu, Yan-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.651-666
    • /
    • 2020
  • In this study, the spatial variation mechanisms of large far-field earthquakes at engineering scales are first investigated with data from the 2008 Ms 8.0 Wenchuan earthquake. And a novel 'coherency cut-off frequency' is proposed to distinguish the spatial variations in ground motions in the low-frequency and high-frequency ranges. Then, a practical piecewise coherency model is developed to estimate and characterize the spatial variation in earthquake ground motions, including the effects of source-to-site distances, site conditions and neighboring topography on these variations. Four particular earthquake records from dense seismograph arrays are used to investigate values of the coherency cut-off frequency for different source-to-site distances. On the basis of this analysis, the model is established to simulate the spatial variations, whose parameters are suitable for both near- and far-field earthquake conditions. Simulations are conducted to validate the proposed model and method. The results show that compared to the existing models, the proposed model provides an effective method for simulating the spatial correlations of ground motions at local sites with known source-to-site distances.

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim;Myungjin Cho;Min-Chul Lee
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.131-137
    • /
    • 2023
  • The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

A Characteristic Value Extraction Method for Content-Based Image Retrieval using Morphological Spatial Frequency

  • Jinwoo Eo;Lee, Dongjin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.42-45
    • /
    • 2002
  • A novel characteristic value extraction method based on morphological spatial frequency is proposed. Morphological spatial frequency defined by morphological pattern distribution function is introduced. Superiority of the method was proved for various images by experiment. Furthermore the fact that the proposed method does not need threshold to obtain binary image provides its applicability to content-based image retrieval.

  • PDF

A study on the broadband beam pattern synthesis using spatial response variation (공간 응답 변화량을 적용한 광대역 빔 형성기 설계법)

  • Lim, Jun Seok;Lee, Keunhwa;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • In this paper, we propose a broadband beamforming method using the Spatial Response Variation (SRV) which is defined to measure the fluctuation of the array spatial response within the desired frequency band. By applying the SRV to regularization term, we achieve a good quality main beam width variation less than 1 degree within the desired frequency band. In design experiments, we show that the proposed method is better than the existing method.