• 제목/요약/키워드: Spatial concentrations

검색결과 451건 처리시간 0.023초

펜실바니아 유역 수질의 공간적 변이에 관한 연구 (Spatial Variations of Nutrient Concentrations in Pennsylvania Watersheds)

  • Chang, Heejun
    • 대한지리학회지
    • /
    • 제37권5호
    • /
    • pp.536-550
    • /
    • 2002
  • 이 연구는 7년 동안의 수문, 기후, 수질자료를 이용하여 펜실바니아 38개 유역 수질의 공간적 변이 패턴을 고찰하였다. 연구기간동안 도시적, 농업적 토지이용이 많은 유역에서 농도의 변이가 심하게 나타났다. 질소의 농도는 농업적 토지이용과. 인의 농도는 도시적 토지이용과 상관관계가 높게 나타났다. 주성분분석을 통해 이들의 농도 변이를 설명하는 주요 성분 셋이 - 토지 지형관련, 기후관련, 규모 - 도출되었다. 부분 여분 분석을 통해 기후, 토지, 지형의 복합적인 영향이 질소 농도 변이의 28.1%를 설명하고 있으며, 순수한 토지 변수의 영향이 인 농도의 41.8 o/o를 설명하고 있음을 알 수 있었다. 주 전체적인 차원에서 농도변이의 뚜렷한 지리적 패턴-북서부지역의 낮은 농도와 남동부지역의 높은 농도-이 나타나고 있으며, 이는 지역적 규모에서 수문, 기후, 토지이용, 지형 등 여러 가지 환경변수의 복합적인 상호관련성을 반영하고 있다.

Spatial analysis of $PM_{10}$ and cardiovascular mortality in the Seoul metropolitan area

  • Lim, Yu-Ra;Bae, Hyun-Joo;Lim, Youn-Hee;Yu, Seungdo;Kim, Geun-Bae;Cho, Yong-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.5.1-5.7
    • /
    • 2014
  • Objectives Numerous studies have revealed the adverse health effects of acute and chronic exposure to particulate matter less than $10{\mu}m$ in aerodynamic diameter ($PM_{10}$). The aim of the present study was to examine the spatial distribution of $PM_{10}$ concentrations and cardiovascular mortality and to investigate the spatial correlation between $PM_{10}$ and cardiovascular mortality using spatial scan statistic (SaTScan) and a regression model. Methods From 2008 to 2010, the spatial distribution of $PM_{10}$ in the Seoul metropolitan area was examined via kriging. In addition, a group of cardiovascular mortality cases was analyzed using SaTScan-based cluster exploration. Geographically weighted regression (GWR) was applied to investigate the correlation between $PM_{10}$ concentrations and cardiovascular mortality. Results An examination of the regional distribution of the cardiovascular mortality was higher in provincial districts (gu) belonging to Incheon and the northern part of Gyeonggi-do than in other regions. In a comparison of $PM_{10}$ concentrations and mortality cluster (MC) regions, all those belonging to MC 1 and MC 2 were found to belong to particulate matter (PM) 1 and PM 2 with high concentrations of air pollutants. In addition, the GWR showed that $PM_{10}$ has a statistically significant relation to cardiovascular mortality. Conclusions To investigate the relation between air pollution and health impact, spatial analyses can be utilized based on kriging, cluster exploration, and GWR for a more systematic and quantitative analysis. It has been proven that cardiovascular mortality is spatially related to the concentration of $PM_{10}$.

Changes in $SO_{2}$ Concentration from Major Cities and Provinces in Korea: A Case Study from 1998 to 2003

  • Nguyen Hang Thi;Kim Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E3호
    • /
    • pp.95-105
    • /
    • 2005
  • The concentrations of sulfur dioxide ($SO_{2}$) were measured from seven major cities and nine provinces in Korea for the period covering 1998 to 2003. Its concentration data were analyzed to explore the possible influences of spatial and temporal factors on the $SO_{2}$ distribution characteristics. Examination of spatial trends of $SO_{2}$ distribution and behavior indicated several interesting features. Although its annual trends appeared to be affected by the changes in the surrounding environmental conditions (e.g., regulation on the use of S-containing fuels), the seasonal trends indicated a cyclic and systematic pattern that may be characterized as: a gradual decrease in concentrations across winter, spring, fall, and summer. The results showed the generally enhanced mean concentrations of $SO_{2}$ from Ulsan, Busan, and Daegu with 12.8, 10.1, and 8.80 ppb, respectively. On the other hand, notably reduced $SO_{2}$ concentrations were seen from Gwangju and Jeju sites with its mean values of 5.43 and 3.88 ppb, respectively. The overall results of our study indicate that a decrease in $SO_{2}$ concentration levels continued through time, while its spatial distribution appears to be affected most sensitively by such factor as city scale and industrial activities.

대구지역 PM10 오염 관리를 위한 시간적 및 공간적 오염 특성 평가 (Evaluation of Temporal and Spatial PM10 Characteristics for Pollution Management in Daegu area)

  • 조완근;권기동
    • 한국환경과학회지
    • /
    • 제13권1호
    • /
    • pp.27-36
    • /
    • 2004
  • Present study analyzed the temporal and spatial characteristics of PM10 pollution in Metropolitan Daegu area based on air pollution monitoring station data and measurements of PM10 concentrations in background area in order to provide essential data for efficient PM10 pollution management. The significant variation of spatial and temporal PM10 concentrations in Daegu area was observed during the study years. The highest maximum PM10 concentration(332 $\mu\textrm{g}$/㎥), average concentration(88 $\mu\textrm{g}$/㎥) and frequency exceeding PM10 daily standard(150 $\mu\textrm{g}$/㎥) were all observed in Namsandong located near a major roadway. The hourly and weekly variations of PM10 concentrations had different pattern for the measurement sites. The monthly and seasonal concentrations exhibited a notable characteristic: the maximum concentration was obtained in spring season, most likely due to Yellow sand effects. Furthermore, this temporal variation of PM10 pollution varied with study site. Meanwhile, the PM10 values measured at the monitoring site, Manchondong, were comparable with those of a control site. The average PM10 concentration ranged from 23 $\mu\textrm{g}$/㎥ to 115 $\mu\textrm{g}$/㎥ with a mean value of 53 $\mu\textrm{g}$/㎥ in the former site and from 22 $\mu\textrm{g}$/㎥ to 91 $\mu\textrm{g}$/㎥ with a mean value of 45 $\mu\textrm{g}$/㎥ in the latter site.

Rainfall and Water Quality Characteristics of Saemangeum Area

  • Monica, Nankya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.203-209
    • /
    • 2014
  • This study investigated characteristics of rainfall and water quality in Saemangeum area with attention to temporal and spatial distributions. A high variability in rainfall was noted during July and August. The temporal analysis of water quality data indicated that DO and TN as well as BOD, COD and SS were within national standards except for increased concentrations during spring and summer, unlike TP values that indicated poor water quality. Standard deviation showed a high variability in SS among the seasons most especially during summer. The high dispersion indicated variability in the chemical composition of pollutants where the temporal and spatial variations caused by polluting sources and/or seasonal changes were most evident for BOD and COD during winter and spring. The box plots and bar charts showed steadily low concentrations of BOD, COD, TN and TP except within Iksan and notable significant variations in SS concentrations among the monitoring stations. Thus, high pollution levels requiring intervention were identified in Mangyeong river basin with particular concern for areas represented by Iksan station. It was noted that Iksan received a considerable amount of rainfall which meant high runoff which could explain the significant pollution levels revealed in the water quality spatial distribution. Major pollution contributing pollutants within Saemangeum area were identified as SS, BOD, COD and TN. Therefore the present results could be used as a guideline for the temporal and spatial distributions analysis of both rainfall and water quality in Saemangeum watershed.

울산지역 대기오염 공간분포 (Spatial Distribution of Air Pollution in the Ulsan Metropolitan Region)

  • 오인보;방진희;김순태;김은혜;황미경;김양호
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.394-407
    • /
    • 2016
  • The spatial air pollution distribution of the Ulsan metropolitan region (UMR) was analyzed using monitoring data and high-resolution numerical simulations. A three-year (2011~2014) analysis for the average concentrations from the 13 air quality monitoring sites in the UMR showed that $SO_2$ and $PM_{10}$ levels in industrial regions were much higher than those in other regions, whereas spatial differences of $NO_2$ and CO concentrations were not significant. In particular, elevated $O_3$ concentrations were clearly found at urban sites near petrochemical complex area. Results from high-resolution simulations by CMAQ model performed for four months of 2012 showed large spatial variations in grid-average pollutant concentrations between industrial areas and other areas in the UMR, which displayed significant changes with wind pattern by season. It was noted that the increases of $SO_2$ and $PM_{10}$ levels were limited in costal industrial areas or over the area nearby the sea in all seasons. Modeled $O_3$ concentrations were quite low in industrial areas and main urban roads with large $NO_x$ emissions. However, the model presented that all pollutant concentrations were significantly increased in the urban residential areas near the industrial complexes in summer season with increase of southerly wind.

A Spatial Analysis of the Causal Factors Influencing China's Air Pollution

  • Kim, Yoomi;Tanaka, Katsuya;Zhang, Xinxin
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.194-201
    • /
    • 2017
  • This study investigates the factors that affect China's air pollution using city-level panel data and spatial econometric models. We address three air pollutants ($PM_{10}$, $SO_2$, and $NO_2$) present in 30 cities in China between 2004-2012 using global OLS and spatial models. To develop the spatial econometric analysis, we create a spatial weights matrix to define spatial patterns based on two neighborhood criteria - the queen contiguity and k nearest neighbors. The results show that the estimated coefficients are relatively consistent across different spatial weight criteria. The OLS models indicate that the effect of green spaces is statistically significant in decreasing the concentrations of all air pollutants. In the $PM_{10}$ and $SO_2$ analyses, the OLS models find that the number of buses and population density are also positively related to a reduction in the concentration of air pollutants. In addition, an increase in the temperature and the presence of secondary industries increase $SO_2$ and $NO_2$ concentrations, respectively. All spatial models capture a positive and significant effect of green spaces on reducing the concentration of each air pollutant. Our results suggest that green spaces in cities should receive priority consideration in local planning aimed at sustainable development. Furthermore, policymakers need to be able to discern the differences among pollutants when establishing environmental policies.

Soil Contamination by Heavy Metals in Playgrounds of Kindergartens in Vilnius

  • Valskys, Vaidotas;Ignatavicius, Gytautas;Sinkevicius, Stanislovas;Gasiunaite, Ugne
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.11-21
    • /
    • 2016
  • The soil contamination by heavy metals in playgrounds of kindergartens in Vilnius city is analysed in this article. The aim of this research is to investigate and evaluate soil contamination by heavy metals in playgrounds of kindergartens in different territories of Vilnius city. Concentrations of heavy metals were measured using Thermo Fisher Scientific Niton$^{(R)}$ XL2 X-ray fluorescence spectrometer. Maximum allowable and background concentrations that are given in Lithuanian hygiene standard and Lithuania geochemical atlas are used to compare and evaluate concentrations of heavy metals. Concentrations of heavy metals and their spatial distribution were analysed in order to exclude the most contaminated areas relating with different functional areas of the city. Geo-statistical analysis and maps of spatial distribution were developed using IDW interpolator in ArcMap software. Detail soil surveys helps to assess the extent of anthropogenic impact in different parts of the city which can be harmful to the soil ecosystem and human health. Such researches can help to change or select different function for city areas in territorial planning process.

미세먼지 농도의 공간적 현황 및 잠재영향인자를 고려한 환경계획적 대응 방향 (Environmental Planning Contermeasures Considering Spatial Distribution and Potential Factors of Particulate Matters Concentration)

  • 성선용
    • 한국환경복원기술학회지
    • /
    • 제23권1호
    • /
    • pp.89-96
    • /
    • 2020
  • Adverse impact of Particulate Matters(PM10, PM2.5; PMs) significantly affects daily lives. Major countermeasures for reducing concentration of PMs were focused on emission source without considering spatial difference of PMs concentration. Thus, this study analyzed spatial·temporal distribution of PMs with observation data as well as potential contributing factors on PMs concentration. The annual average concentration of PMs have been decreased while the particulate matter warnings and alerts were significantly increased in 2018. The average concentration of PMs in spring and winter was higher than the other seasons. Also, the spatial distribution of PMs were also showed seasonality while concentration of PMs were higher in Seoul-metropolitan areas in all seasons. Climate variables, emission source, spatial structure and potential PM sinks were selected major factors which could affects on ambient concentrations of PMs. This paper suggest that countermeasures for mitigating PM concentration should consider characteristics of area. Climatic variables(temperature, pressure, wind speed etc.) affects concentrations of PMs. The effects of spatial structure of cities(terrain, ventilation corridor) and biological sinks(green infrastructure, urban forests) on concentration of PMs should be analyzed in further studies. Also, seasonality of PMs concentration should be considered for establishing effective countermeasures to reduce ambient PMs concentration.

GIS를 이용한 도로 분진의 중금속원소 함량 해석에 관한 연구 (Interpretation of heavy metal elements from the road dusts using GIS)

  • 이효재;이근상;이언호;장영률
    • Spatial Information Research
    • /
    • 제10권2호
    • /
    • pp.201-213
    • /
    • 2002
  • 대도시화와 산업화에 따른 중금속 오염으로 많은 환경오염을 일으키고 있다. 본 연구에서는 Cd, Cu, Fe, Mn, Pb, Zn와 같은 중금속 원소들의 분산과 산출상태를 규명하기 위해 광주광역시의 도로변에서 분진을 채취하여 분석하였다. 분진중의 pH를 측정하였으며 0.1N HCI에 의한 용출실험으로 Cd, Cu, Fe, MN, Pb 및 Zn 함량을 AAS를 이용하여 분석하였다. 광주시의 도로변 분진의 pH는 5.60-7.09범위로 약산성 내지는 거의 중성에 가깝게 나타났으며, 0.IN HCI을 이용한 부분분해 방법으로 분석한 결과는 일부 지역을 제외하고는 오염도가 높다고 판단하기는 어려움이 있지만 Cd와 Cu는 서구지역 특히 광천터미널에서 멀지 않은 지역에서 약간 높은 수치를 보여주며, Mn과 Pb는 북구와 남구에서 약간 높은 수치를 보였으며 Zn는 평균 150.09ppm으로 오염이 상당히 진행되고 있었다. P.I.는 전 지역이 1이하로 우려할 상황 은 아니다. 본 연구와 같은 분석방법을 이용한 다른 지역과 비교해 볼 때, Cd 와 Zn의 오염이 상당히 진행되고 있음을 확인했다.

  • PDF