• Title/Summary/Keyword: Spatial clustering

Search Result 361, Processing Time 0.032 seconds

Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering (공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • This study propose a image processing system of unsupervised analysis. This system integrates low-level segmentation and high-level classification. The segmentation and classification are conducted respectively with and without spatial constraints on merging by a hierarchical clustering procedure. The clustering utilizes the local mutually closest neighbors and multi-window operation of a pyramid-like structure. The proposed system has been evaluated using simulated images and applied for the LANDSATETM+ image collected from Youngin-Nungpyung area on the Korean Peninsula.

Performance Evaluation of Spatial Clustering Method using Regular Grid (균등 격자를 이용한 공간 클러스터링 기법의 성능 평가)

  • 문상호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.468-471
    • /
    • 2003
  • In this paper, experimental tests are performed to evaluate the efficiency of spatial clustering method using regular grid that is proposed in our recent research. In details, we estimate the execution time for finding clusters varying spatial objects on sample data sets with various distributions and perform experimental tests varying threshold value on a data set. We also compare the running time of cluster generating algorithm with that of cluster merging algorithm per each test.

  • PDF

A Study on the Distribution of Cold Water Occurrence using K-Means Clustering (K-Means Clustering을 활용한 냉수대 발생 분포에 관한 연구)

  • Kim, Bum-Kyu;Yoon, Hong-Joo;Lee, Jun Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.371-378
    • /
    • 2021
  • In this study, in order to analyze the spatial distribution of cold water occurred in the Southeast Sea of Korea, the K-means clustering method was used to analyze the ocean observatory buoy of Gori and Yangpo and GHTSST Level 4 from 2016 to 2018. The buoy data was used to identify the change in sea water temperature and the cold water occurrence at Gori and Yangpo in the Southeast Sea. As a result, the sea water temperature of Gori and Yangpo decreased equally at the cold water occurrence. Therefore, the reciprocal of the sea water temperature and the variance of SST were compared to see the changes of SST when the cold water occurs. When the reciprocal of the sea water temperature increases, the dispersion of SST also increases. Through this, it can be seen that there is a change in the water temperature distribution of SST in the sea when the cold water occurs. After that, K-means clustering was used to classify the cold water. After analyzing the optimal K value for clustering by using the Elbow method, it was possible to classify a region with cold water. Through this, it is estimated that the spatial distribution and diffusion range of the cold water, and it can be estimated and used in future studies to identify damage caused by the cold water and predict spatial spread.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

A Study on the Analysis of Spatial Characteristics with Respect to Regional Mobility Using Clustering Technique Based on Origin-Destination Mobility Data (기종점 모빌리티 데이터 기반 클러스터링 기법을 활용한 지역 모빌리티의 공간적 특성 분석 연구)

  • Donghoun Lee;Yongjun Ahn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.219-232
    • /
    • 2023
  • Mobility services need to change according to the regional characteristics of the target service area. Accordingly, analysis of mobility patterns and characteristics based on Origin-Destination (OD) data that reflect travel behaviors in the target service area is required. However, since conventional methods construct the OD data obtained from the administrative district-based zone system, it is hard to ensure spatial homogeneity. Hence, there are limitations in analyzing the inherent travel patterns of each mobility service, particularly for new mobility service like Demand Responsive Transit (DRT). Unlike the conventional approach, this study applies a data-driven clustering technique to conduct spatial analyses on OD travel patterns of regional mobility services based on reconstructed OD data derived from re-aggregation for original OD distributions. Based on the reconstructed OD data that contains information on the inherent feature vectors of the original OD data, the proposed method enables analysis of the spatial characteristics of regional mobility services, including public transit bus, taxi and DRT.

Spatial Clustering Method Via Generalized Lasso (Generalized Lasso를 이용한 공간 군집 기법)

  • Song, Eunjung;Choi, Hosik;Hwang, Seungsik;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.561-575
    • /
    • 2014
  • In this paper, we propose a penalized likelihood method to detect local spatial clusters associated with disease. The key computational algorithm is based on genlasso by Tibshirani and Taylor (2011). The proposed method has two main advantages over Kulldorff's method which is popoular to detect local spatial clusters. First, it is not needed to specify a proper cluster size a priori. Second, any type of covariate can be incorporated and, it is possible to find local spatial clusters adjusted for some demographic variables. We illustrate our proposed method using tuberculosis data from Seoul.

An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network (무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집)

  • Yun, SangHun;Cho, Haengrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

Design and Implementation of Spatial Characterization System using Density-Based Clustering (밀도 클러스터링을 이용한 공간 특성화 시스템 설계 및 구현)

  • You Jae-Hyun;Park Tae-Su;Ahn Chan-Min;Park Sang-Ho;Hong Jun-Sik;Lee Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.43-52
    • /
    • 2006
  • LRecently, with increasing interest in ubiquitous computing, knowledge discovery method is needed with consideration of the efficiency and the effectiveness of wide range and various forms of data. Spatial Characterization which extends former characterization method with consideration of spatial and non-spatial property enables to find various form of knowledge in spatial region. The previous spatial characterization methods have the problems as follows. Firstly, former study shows the problem that the result of searched knowledge is unable to perform the multiple spatial analysis. Secondly, it is unable to secure the useful knowledge search since it searches the limited spatial region which is allocated by the user. Thus, this study suggests spatial characterization which applies to density based clustering.

  • PDF

Shot Group and Representative Shot Frame Detection using Similarity-based Clustering

  • Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.37-43
    • /
    • 2016
  • This paper introduces a method for video shot group detection needed for efficient management and summary of video. The proposed method detects shots based on low-level visual properties and performs temporal and spatial clustering based on visual similarity of neighboring shots. Shot groups created from temporal clustering are further clustered into small groups with respect to visual similarity. A set of representative shot frames are selected from each cluster of the smaller groups representing a scene. Shots excluded from temporal clustering are also clustered into groups from which representative shot frames are selected. A number of video clips are collected and applied to the method for accuracy of shot group detection. We achieved 91% of accuracy of the method for shot group detection. The number of representative shot frames is reduced to 1/3 of the total shot frames. The experiment also shows the inverse relationship between accuracy and compression rate.