• Title/Summary/Keyword: Spatial Structural System

Search Result 431, Processing Time 0.028 seconds

Development of New Detachable Connection for Glass Fiber Reinforced Polymer Considering of Short and Long-Term Behavior

  • Park, Don-U;Hwang, Kyung-Ju;Knippers, Jan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.141-151
    • /
    • 2007
  • The appearance of many Glass Fiber Reinforced Plastic (GFRP) constructions look like ordinary steel construction, because GFRP has been imitated by the same way with the traditional steel's cross section as well as connection system. In terms of detachable connection, there was not enough appropriate option of GFRP connection, such as a traditional bolt connection for steel and wood structures. Most of all, from material characteristic of GFRP related to the deficient ductility, the shearstress principle of GFRP s not proper for the material property, which causes ineffective and not economic application of material. With this research problem, the innovative and detachable onnection system, which is more considered with appropriate material characteristic for FRP, is developed. Not only short time but also long time research with various connection variations is carried out.

  • PDF

A Development of Intersecting Tensegrity System and Analysis of Structural Features for Forming Space (관입형 텐서그리티 구조시스템의 개발 및 공간구축을 위한 구조특성 분석)

  • Lee, Juna;Miyasato, Naoya;Saitoh, Masao
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • In this study, Intersecting Tensegrity System that is integrated solid compression members with tension members was presented. This system is set up by connecting upper and lower compression members of pyramid shape with exterior tension members. In this system, the solid compression members are intersected each other and connected by a tension member in the center. This system is a variation of Tensegrity system, has a improved feature that the system is able to induce prestresses in all of tension members easily by adjusting the distance of a tension member in the center. The proposed system was studied by modeling, and the structural behavior of the system was investigated by mechanical analysis of the model. Furthermore, the features of the structural behavior variations was investigated when the composition elements(total height, size of surface, intersection length, etc.) are changed variously. It was also showed that the system is able to be used as a temporary space structure system with a membrane roof of inverse conical shape.

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

Lateral-resisting Structural Systems for Tall Modular Buildings (모듈러 건축물의 수평력 저항 구조시스템)

  • Lee, Chang-Hwan;Chung, Kwang-Ryang
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2016
  • Modular buildings are constructed by assembling modular units which are prefabricated in a factory and delivered to the site. However, due to a problem of noise between floors, concrete slab is usually poured at the top or bottom level of a modular unit in Korea. This greatly increases the weight of buildings, but designing vertical members of modular units to resist overall gravity loads is very inefficient. In this study, considering domestic building construction practices, feasible structural systems for tall modular buildings are proposed in which separate steel frames and reinforced concrete core walls are designed to resist gravity and lateral loads. To verify performance, a three-dimensional structural analysis has been performed with two types of prototype buildings, i.e., a residential building and a hotel. From the results, wind-induced lateral displacements and seismic story drifts are examined and compared with their limit values. Between the two kinds of buildings, the efficiency of the proposed system is also evaluated through a comparison of the weight of structural components. Finally, the effect of a floor diaphragm on the overall behavior is analyzed and discussed.

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

A Study on the Stress Concentration at Crack of Membrane Structures (막구조물의 파손단면에서의 응력집중 현상에 관한 연구)

  • Jeon, Jin-Hyung;Jeong, Eul-Seok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

Interface Technique for Optimization of Free-form Structural System (구조 최적화를 위한 비정형 구조시스템의 인터페이스 기법)

  • Na, Yoo-Mi;Lee, Jae-Hong;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Recently, due to the advanced computer technology, momental architectures have been designed and built using features that are very sophisticated. People's interest in free-form structural system has increased steadily not only nationwide, but also worldwide. However, there were many difficulties in the materialization of free-form structural system owing to the lack of technique and research. To solve this problem, this study performs the interface between the 3D modeling program and the optimization program. In the 3D modeling program, it is possible to automatic mesh generation and immediately to information extraction. It performs the shape optimization. Consequently, this research designs the example model and performs optimization in order to verify the developed interface module.

Review for vision-based structural damage evaluation in disasters focusing on nonlinearity

  • Sifan Wang;Mayuko Nishio
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.263-279
    • /
    • 2024
  • With the increasing diversity of internet media, available video data have become more convenient and abundant. Related video data-based research has advanced rapidly in recent years owing to advantages such as noncontact, low-cost data acquisition, high spatial resolution, and simultaneity. Additionally, structural nonlinearity extraction has attracted increasing attention as a tool for damage evaluation. This review paper aims to summarize the research experience with the recent developments and applications of video data-based technology for structural nonlinearity extraction and damage evaluation. The most regularly used object detection images and video databases are first summarized, followed by suggestions for obtaining video data on structural nonlinear damage events. Technologies for linear and nonlinear system identification based on video data are then discussed. In addition, common nonlinear damage types in disaster events and prevalent processing algorithms are reviewed in the section on structural damage evaluation using video data uploaded on online platform. Finally, a discussion regarding some potential research directions is proposed to address the weaknesses of the current nonlinear extraction technology based on video data, such as the use of uni-dimensional time-series data as leverage to further achieve nonlinear extraction and the difficulty of real-time detection, including the fields of nonlinear extraction for spatial data, real-time detection, and visualization.

A Study on the Spatial Property of Dress Modeling-I (복식조형의 공간적 특질에 관한 연구-I)

  • 김혜연
    • Journal of the Korean Society of Costume
    • /
    • v.38
    • /
    • pp.31-49
    • /
    • 1998
  • This study is the primary basic study about the spatial feature of modeling of Fashion Design. Then, this researcher lays significance in establishing the basic system about the character of dress and its ornaments as modeling in spatial-formal, dimension, examining the feature of modeling closely through perception principle and offering the basic principle to plan and organize the modeling space for dress and its ornaments on the basis of it. To generalize the findings is as follows : First, the spatial system of modeling for dress and its ornaments is made with 3 elements such as space, human beings and dress and its ornaments. Second, the form of dress and its ornaments and the spatial organization start from the structural basis which is human body, and the sensible system of body is made through inter-action, but the aesthetic expression is complet-ed by the moment of body. Third, the characteristic principle of model-ing for dress and its ornaments which was suggested in Chapter IV is based on the visuo-per-ceptional modeling experience, and these thinking contents are inputted in cognition course as the invisible in formation in the new space plan and organization and activate the apperception course and aim at the action about aesthetic judgement.

  • PDF

A Study on the Characteristics of dynamic Behaviors for the Spatial Structures under Seismic Load (지진하중을 받는 대공간 구조물의 동적 거동 특성에 관한 연구)

  • Kim, Min-Sik;Lee, Sang-Ju;Lee, Dong-Woo;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.227-235
    • /
    • 2005
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability. For those purposes, recently, the performance design concept to increase the degree of absorbed energy level of structures has been proposed. One practical way of the performance design in the spatial structures is to apply the isolation system to boundary parts of roof system and sub-structure to obtain the target performance. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to develop the equivalent model to simplify the analytical processes and to investigate the dynamic behavior of roof system according to the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

  • PDF