• Title/Summary/Keyword: Spatial Statistical Analysis Methods

Search Result 145, Processing Time 0.013 seconds

A Comparative Study on Spatial Lattice Data Analysis - A Case Where Outlier Exists - (공간 격자데이터 분석에 대한 우위성 비교 연구 - 이상치가 존재하는 경우 -)

  • Kim, Su-Jung;Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.193-204
    • /
    • 2010
  • Recently, researchers of the various fields where the spatial analysis is needed have more interested in spatial statistics. In case of data with spatial correlation, methodologies accounting for the correlation are required and there have been developments in methods for spatial data analysis. Lattice data among spatial data is analyzed with following three procedures: (1) definition of the spatial neighborhood, (2) definition of spatial weight, and (3) the analysis using spatial models. The present paper shows a spatial statistical analysis method superior to a general statistical method in aspect estimation by using the trimmed mean squared error statistic, when we analysis the spatial lattice data that outliers are included. To show validation and usefulness of contents in this paper, we perform a small simulation study and show an empirical example with a criminal data in BusanJin-Gu, Korea.

Spatial Analysis Methods for Asbestos Exposure Research (석면노출연구를 위한 공간분석기법)

  • Kim, Ju-Young;Kang, Dong-Mug
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.369-379
    • /
    • 2012
  • Objectives: Spatial analysis is useful for understanding complicated causal relationships. This paper focuses trends and appling methods for spatial analysis associated with environmental asbestos exposure. Methods: Literature review and reflection of experience of authors were conducted to know academic background of spatial analysis, appling methods on epidemiology and asbestos exposure. Results: Spatial analysis based on spatial autocorrelation provides a variety of methods through which to conduct mapping, cluster analysis, diffusion, interpolation, and identification. Cause of disease occurrence can be investigated through spatial analysis. Appropriate methods can be applied according to contagiousness and continuity. Spatial analysis for asbestos exposure source is needed to study asbestos related diseases. Although a great amount of research has used spatial analysis to study exposure assessment and distribution of disease occurrence, these studies tend to focus on the construction of a thematic map without different forms of analysis. Recently, spatial analysis has been advanced by merging with web tools, mobile computing, statistical packages, social network analysis, and big data. Conclusions: Because the trend in spatial analysis has evolved from simple marking into a variety of forms of analyses, environmental researchers including asbestos exposure study are required to be aware of recent trends.

Robustness, Data Analysis, and Statistical Modeling: The First 50 Years and Beyond

  • Barrios, Erniel B.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.543-556
    • /
    • 2015
  • We present a survey of contributions that defined the nature and extent of robust statistics for the last 50 years. From the pioneering work of Tukey, Huber, and Hampel that focused on robust location parameter estimation, we presented various generalizations of these estimation procedures that cover a wide variety of models and data analysis methods. Among these extensions, we present linear models, clustered and dependent observations, times series data, binary and discrete data, models for spatial data, nonparametric methods, and forward search methods for outliers. We also present the current interest in robust statistics and conclude with suggestions on the possible future direction of this area for statistical science.

A Spatial Regression for Hospital Data

  • Choi, Yong-Seok;Kang, Chang-Wan;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1271-1278
    • /
    • 2006
  • Recently, a profit analysis in hospital management is considered as an important marketing concept. When spatial variability is presented, we must analyze the hospital data with spatial statistical methods. In this study, we present a regression model using spatial covariance for adjustment. And we compare the nonspatial model with spatial model.

  • PDF

Comparison between Kriging and GWR for the Spatial Data (공간자료에 대한 지리적 가중회귀 모형과 크리깅의 비교)

  • Kim Sun-Woo;Jeong Ae-Ran;Lee Sung-Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.271-280
    • /
    • 2005
  • Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.

Spatial Data Analysis using the Kriging Method

  • Jang, Jihui;Hong, Taekyong;NamKung, Pyong
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.423-432
    • /
    • 2003
  • The data observed at different positions are called the estimate of interested variable at new observation point on the Kriging utilize the space estimate technique, in which case there is correlation spatially. In this paper we provide the estimate for Variogram and Kriging methods as a field of kriging theory and dealt with actually measured data. And at the same time we forecast the amount of ozone that was not measured at this point by Kriging method and compared Ordinary Kriging method with Inverse Distance Kriging method.

Hierarchical Bayesian Analysis of Spatial Data with Application to Disease Mapping

  • Kim, Dal-Ho;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.781-790
    • /
    • 1999
  • In this paper we consider estimation of cancer incidence rates for local areas. The raw estimates usually are based on small sample sizes and hence are usually unreliable. A hierarchical Bayes generalized linear model is used which connects the local areas thereby enabling one to 'borrow strength' Random effects with pairwise difference priors model the spatial structure in the data. The methods are applied to cancer incidence estimation for census tracts in a certain region of the state of New York.

  • PDF

Empirical variogram for achieving the best valid variogram

  • Mahdi, Esam;Abuzaid, Ali H.;Atta, Abdu M.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.547-568
    • /
    • 2020
  • Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the variograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we traditionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN) showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The analysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in groundwater dataset.

Model identification of spatial autoregressive data analysis (공간 자기회귀모형의 식별)

  • 손건태;백지선
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.121-136
    • /
    • 1997
  • Spatial data is collected on a regular Cartesian lattice. In this paper we consider the model indentification of spatial autoregressive(SAR) models using AIC, BIC, pattern method. The proposed methods are considered as an application of AIC, BIC, 3-patterns for SAR models through three directions; row, column and diagonal directions. Using the Monte Carlo simulation, we test the efficiency of the proposed methods for various SAR models.

  • PDF

A Comparison of Landscape Evaluation between the Internet and Slide Method (인터넷과 슬라이드를 이용한 경관평가방법의 비교)

  • Huh, Joon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.5
    • /
    • pp.20-27
    • /
    • 2001
  • The purpose of this study is to investigate and compare the validity and the reliability of the visual simulation method using the internet. For this. the evaluation of the artificial and natural landscape through the medium of color slides are compared with the internet survey. Data is analysed through the comparison of t-test between the two media by landscape type, and spatial image is analysed by factor analysis algorithm. Principle component analysis using Varimax Method is applied for extraction and factor rotation respectively. The results of this study can be summarized as follows; There are no statistical differences between the two methods with artificial and natural landscape in the total data that included second tests. Factors covering the spatial image are found to be \`aesthetic\`, \`spatial shape\`, and \`familiarity\`. Total variance is obtained as 66.4%. There are no statistical differences between the two methods in 2/3 of the cases. In the case of far view of artificial landscape, the results of the t-test show that the two methods are exactly the same. Especially in the case of the artificial far landscape shows no difference of all factors between two methods. There are no differences between first and second tests of the same media and the same landscape type. And it shows the reliability of this method. These results suggest that the probability that the internet can be used as a medium of landscape evaluation and gathering information on anyone\`s landscape image. Simulation techniques with the internet survey method should be further developed for practical application.

  • PDF