• Title/Summary/Keyword: Spatial Sensitivity

Search Result 423, Processing Time 0.025 seconds

Optimization of Parallel-Hole Collimator for Small Gamma Camera Based on Pixellated Crystal Array (배열형 섬광결정을 이용한 소형 감마카메라의 평행구멍형 조준기 최적화 연구)

  • Chung, Yong-Hyun;Beak, Cheol-Ha;Lee, Seung-Jae;Park, Jin-Hyung
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.291-297
    • /
    • 2008
  • The purpose of this study is to optimize a parallel-hole collimator for small gamma camera having the pixellated crystal array and evaluate the effect of crystal-collimator misalignment on the image quality using a simulation tool GATE (Geant4 Application for Tomographic Emission). The spatial resolution and sensitivity were measured for the various size of hexagonal-hole and matched square-hole collimators with a Tc-99m point source and the uniformity of flood image was estimated as a function of the angle between crystal array and collimator by misalignment. The results showed that the spatial resolution and sensitivity were greatly improved by using the matched collimator and the uniformity was reduced by crystal-collimator misalignment.

  • PDF

FAR INFRARED ASTRONOMY AFTER SPICA

  • Swinyard, Bruce;Pearson, Chris
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.337-341
    • /
    • 2017
  • This paper reviews the requirements for far-infrared astronomy in the period following the SPICA satellite in the late 2020's. We take a very long view of the state of FIR astronomy and what facilities will be required in a twenty year timeframe. We show that spatial resolution to match that of observatories operating in the optical and mid-infrared and the radio will be a necessity. Moreover this high spatial resolution must be combined with high spectral and photometric sensitivity to provide the data required to further our understanding of planetary formation mechanisms, the history of star formation through cosmic time and the feedback between active galactic nuclei and their host galaxies in controlling star formation. We review three possible conceptual mission scenarios and comment on the possibility of realising them in the coming deades.

New Block Coding Method for the Medical Images based on Human Visual System Characteristics. (인간의 시각 특성을 이용한 의학 영상에서의 블록 코딩 방법에 관한 연구)

  • Chee, Young-Joon;Kim, Young-Hoon;Park, Kwang-Suk
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.51-54
    • /
    • 1992
  • Recently, the Image compression methods in cooperation with Human Visual System characteristics are being investigated lively. In this study, we propose a new block coding method using i) non-linearity of HVS in the noticeable differences, ii) spatial easting effects, and iii) HVS sensitivity curve according to spatial frequencies. For vector quantization, the third scheme was dole effective than existing ones. We have applied this method on chest images and the results have shown better subjective qualities.

  • PDF

Development of Micro-size Search Coil Magnetometer for Magnetic Field Distribution Measurement

  • Ka, E.M.;Son, De-Rac
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.34-36
    • /
    • 2008
  • For the measurement of the magnetic field distribution with high spatial resolution and high accuracy, the magnetic field sensing probe must be non-magnetic, but the MFM probe and sub-millimeter-meter size Hall probe use a ferromagnetic tip and block, respectively, to increase the sensitivity. To overcome this drawback, we developed a micro-size search coil magnetometer which consists of a single turn search coil, Terfenol-D actuator, scanning system, and control software. To reduce the noise generated by the stray ac magnetic field of the actuator driving coil, we employed an even function $\lambda$-H magnetostriction curve and lock-in technique. Using the developed magnetometer, we were able to measure the magnetic field distribution with a magnetic field resolution of 1 mT and spatial resolution of $0.1mm{\times}0.2mm$ at a coil vibration frequency of 1.8 kHz.

Nonlinear Analysis of Hybrid-Typed Cable Structures by Stress Control (장력제어 기법을 이용한 Hybrid형 케이블 구조물의 비선형 시공해석)

  • Jeong, Eul-Seok;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.123-130
    • /
    • 2004
  • The recent large-spatial structures are frequently made from light-weight structural system and it has a good mechanical efficiency and uses new materials. The large space is made by light-weight structural system using tension members mainly, and generally it is called a soft structure. The cable dome structures which are a soft structures are very flexible, the stresses and nodal coordinates of other members are changed when we control the stress of one member. Therefore, we have to do two kind of works for effective and accurate construction of the cable dome structures. The first work is making a working scenario to complete the final objective form and the second is revising constructional errors occurred in process of the actual works. These works are called constructional analysis. At this time, we have to consider geometric nonlinearity to reflect the sensitivity by the initial stresses of cable dome structures, and constructional analysis comes down to a nonlinear problem after all. In this study, we try to approach the constructional analysis of the cable dome structures using the numerical method, and then verify it.

  • PDF

An Improved Histogram Specification using Multiresolution in the Spatial Domain for Image Enhancement (이미지 향상을 위해 공간영역에서 다중해상도를 이용한 개선된 히스토그램 특정화 방법)

  • Huh, Kyung-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • Usually, spatial information can be incorporated into histograms by taking histograms of a multiresolution image. For these reasons, many researchers are interested in multiresolution histogram processing. If the relation and sensitivity of the multiresolution images are well combined without loss of information, we can obtain satisfactory results in several fields of image processing including histogram equalization, specification and pattern matching. In this paper, we propose a multiresolution histogram specification method that improves the accuracy of histogram specification. The multiresolution decomposition technique is used in order to overcome the unique feature of a histogram specification affected by a quantization error of a digitalized image. The histogram specification is processed after the reduction of image resolution in order to enhance the accuracy of the results by histogram specification methods. The experimental results show that the proposed method enhances the accuracy of specification compared to conventional methods.

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

Direction Vector for Efficient Structural Optimization with Genetic Algorithm (효율적 구조최적화를 위한 유전자 알고리즘의 방향벡터)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the modified genetic algorithm, D-GA, is proposed. D-GA is a hybrid genetic algorithm combined a simple genetic algorithm and the local search algorithm using direction vectors. Also, two types of direction vectors, learning direction vector and random direction vector, are defined without the sensitivity analysis. The accuracy of D-GA is compared with that of simple genetic algorithm. It is demonstrated that the proposed approach can be an effective optimization technique through a minimum weight structural optimization of ten bar truss.

  • PDF

A Sensitivity Analysis of Accuracy for COMS Outgoing Longwave Radiation Product

  • Kim, Hyunji;Han, Kyung-Soo;Lee, Chang Suk;Shin, Inchul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • Outgoing Longwave Radiation (OLR) is emitted energy from the Earth that is an important indicator of cooling effect in global scale and meteorological events in regional scale. Satellite-driven OLR products have its advantages overcoming spatially limited representation. The Korean geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS), has been producing OLR product in accordance with its own algorithm since Apr. 2011. This study introduces Spatio-Temporally Equalized Match-up (STEM) approach to evaluate the COMS OLR products. We have tested a number of cases of thresholds set by standard deviations of a subpixel $10.8{\mu}m$ to find optimal representation of OLR in the selective match-up. Each case was then validated with broadband reference data, Clouds and the Earth's Radiant Energy System (CERES). We found that selective STEM approach was useful to validate OLR product especially its distribution in homogeneous grids.

A Sensitivity of Simulated Runoff Characteristics on the Different Spatial Resolutions of Precipitation Data (강우자료의 공간해상도에 따른 모의 유출특성 민감도 고찰)

  • Lee, Dogil;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.37-49
    • /
    • 2023
  • Rainfall data is one of the most important data in hydrologic modeling. In this study, the impacts of spatial resolution of precipitation data on hydrological responses were assessed using SWAT in the Santa Fe River Basin, Florida. High correlations were found between the FAWN and NLDAS rainfall data, which are observed weather data and simulated weather data based on observed data, respectively. FAWN-based scenarios had higher maximum rainfall and more rainfall days and events compared to NLDAS-based scenarios. Downstream areas showed lower correlations between rainfall and peak discharge than upstream areas due to the characteristics of study site. All scenarios did not show significant differences in base flow, and showed less than 5% of differences in high flows among NLDAS-based scenarios. The impact of resolution will appear differently depending on the characteristics of the watershed and topography and the applied model, and thus, is a process that must be considered in advance in runoff simulation research. The study suggests that applying the research method to watersheds in Korea may yield more pronounced results, and highlights the importance of considering data resolution in hydrologic modeling.