• Title/Summary/Keyword: Spatial Regression Model

Search Result 381, Processing Time 0.022 seconds

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

Spatial Data Analysis for the U.S. Regional Income Convergence,1969-1999: A Critical Appraisal of $\beta$-convergence (미국 소득분포의 지역적 수렴에 대한 공간자료 분석(1969∼1999년) - 베타-수렴에 대한 비판적 검토 -)

  • Sang-Il Lee
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.2
    • /
    • pp.212-228
    • /
    • 2004
  • This paper is concerned with an important aspect of regional income convergence, ${\beta}$-convergence, which refers to the negative relationship between initial income levels and income growth rates of regions over a period of time. The common research framework on ${\beta}$-convergence which is based on OLS regression models has two drawbacks. First, it ignores spatially autocorrelated residuals. Second, it does not provide any way of exploring spatial heterogeneity across regions in terms of ${\beta}$-convergence. Given that empirical studies on ${\beta}$-convergence need to be edified by spatial data analysis, this paper aims to: (1) provide a critical review of empirical studies on ${\beta}$-convergence from a spatial perspective; (2) investigate spatio-temporal income dynamics across the U.S. labor market areas for the last 30 years (1969-1999) by fitting spatial regression models and applying bivariate ESDA techniques. The major findings are as follows. First, the hypothesis of ${\beta}$-convergence was only partially evidenced, and the trend substantively varied across sub-periods. Second, a SAR model indicated that ${\beta}$-coefficient for the entire period was not significant at the 99% confidence level, which may lead to a conclusion that there is no statistical evidence of regional income convergence in the US over the last three decades. Third, the results from bivariate ESDA techniques and a GWR model report that there was a substantive level of spatial heterogeneity in the catch-up process, and suggested possible spatial regimes. It was also observed that the sub-periods showed a substantial level of spatio-temporal heterogeneity in ${\beta}$-convergence: the catch-up scenario in a spatial sense was least pronounced during the 1980s.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

A Study on Road Transport Network And Economy effect in Korea: Application of SNA and Spatial Panel Regression (국내 지역별 도로운송네트워크가 지역경제에 미치는 영향: SNA 및 공간패널회귀모형의 적용)

  • Jin-Ho Oh;Jae-Seon Ahn;Zhen Wu
    • Korea Trade Review
    • /
    • v.47 no.2
    • /
    • pp.175-193
    • /
    • 2022
  • This study analyzes the effects of road transportation networks on the local economy in korea. The analysis methods are SNA and spatial panel regression model. The subjects of this study are inland areas of Korea, and the research period is from 2010 to 2019. The network analysis showed that the connection centrality of Gyeongg-do was high internally and externally. Gyeonggi-do has played a central role in the domestic road freight transportation industry. The results of spatial panel regression analysis showed that there was economic competition between regions. Domestic road transportation industry has been competitive among regions and has economic ripple effect. And Internal cargo has been shown to boost the economy of the region. But internal cargo has been shown to lower the economy of surrounding regions, but external cargo has been shown to increase the economy. In order to revitalize the local economy, it is necessary to increase road cargo.

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds (미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발)

  • Kim, Youngil;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.677-686
    • /
    • 2018
  • There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.

High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea

  • Kim, Yun Jeong;Park, Man Sik;Lee, Eunil;Choi, Jae Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.361-367
    • /
    • 2016
  • We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in $R^2$ from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

Local Analysis of the spatial characteristics of urban flooding areas using GWR (지리가중회귀모델을 이용한 도시홍수 피해지역의 지역적 공간특성 분석)

  • Sim, Jun-Seok;Kim, Ji-Sook;Lee, Sung-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2014
  • In recent years, the frequency and scale of the natural disasters are growing rapidly due to the global climate change. In case of the urban flooding, high-density of population and infrastructure has caused the more intensive damages. In this study, we analyzed the spatial characteristics of urban flooding damage factors using GWR(Geographically Weighted Regression) for effective disaster prevention and then, classified the causes of the flood damage by spatial characteristics. The damage factors applied consists of natural variables such as the poor drainage area, the distance from the river, elevation and slope, and anthropogenic variables such as the impervious surface area, urbanized area, and infrastructure area, which are selected by literature review. This study carried out the comparative analysis between OLS(Ordinary Least Square) and GWR model for identifying spatial non-stationarity and spatial autocorrelation, and in the results, GWR model has higher explanation power than OLS model. As a result, it appears that there are some differences between each of the flood damage areas depending on the variables. We conclude that the establishment of disaster prevention plan for urban flooding area should reflect the spatial characteristics of the damaged areas. This study provides an improved understandings of the causes of urban flood damages, which can be diverse according to their own spatial characteristics.

Application of a Geographically Weighted Poisson Regression Analysis to Explore Spatial Varying Relationship Between Highly Pathogenic Avian Influenza Incidence and Associated Determinants (공간가중 포아송 회귀모형을 이용한 고병원성 조류인플루엔자 발생에 영향을 미치는 결정인자의 공간이질성 분석)

  • Choi, Sung-Hyun;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • In South Korea, six large outbreaks of highly pathogenic avian influenza (HPAI) have occurred since the first confirmation in 2003 from chickens. For the past 15 years, HPAI outbreaks have become an annual phenomenon throughout the country and has extended to wider regions, across rural and urban environments. An understanding of the spatial epidemiology of HPAI occurrence is essential in assessing and managing the risk of the infection; however, local spatial variations of relationship between HPAI incidences in Korea and related risk factors have rarely been derived. This study examined whether spatial heterogeneity exists in this relationship, using a geographically weighted Poisson regression (GWPR) model. The outcome variable was the number of HPAI-positive farms at 252 Si-Gun-Gu (administrative boundaries in Korea) level notified to government authority during the period from January 2014 to April 2016. This response variable was regressed to a set of sociodemographic and topographic predictors, including the number of wild birds infected with HPAI virus, the number of wintering birds and their species migrated into Korea, the movement frequency of vehicles carrying animals, the volume of manure treated per day, the number of livestock farms, and mean elevation. Both global and local modeling techniques were employed to fit the model. From 2014 to 2016, a total of 403 HPAI-positive farms were reported with high incidence especially in western coastal regions, ranging from 0 to 74. The results of this study show that local model (adjusted R-square = 0.801, AIC = 954.5) has great advantages over corresponding global model (adjusted R-square = 0.408, AIC = 2323.1) in terms of model fitting and performance. The relationship between HPAI incidence in Korea and seven predictors under consideration were significantly spatially non-stationary, contrary to assumptions in the global model. The comparison between global Poisson and GWPR results indicated that a place-specific spatial analysis not only fit the data better, but also provided insights into understanding the non-stationarity of the associations between the HPAI and associated determinants. We demonstrated that an empirically derived GWPR model has the potential to serve as a useful tool for assessing spatially varying characteristics of HPAI incidences for a given local area and predicting the risk area of HPAI occurrence. Considering the prominent burden of HPAI this study provides more insights into spatial targeting of enhanced surveillance and control strategies in high-risk regions against HPAI outbreaks.

Spatial Regression Analysis of Factors Affecting the Spatial Accessibility of the Public Libraries in Busan (공간회귀분석을 이용한 부산지역 공공도서관 접근성 영향 요인 분석)

  • Koo, Bon Jin;Chang, Durk Hyun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.67-87
    • /
    • 2021
  • Public library accessibility directly affects library usage, and the disproportionate distribution of accessibility is a decisive factor limiting the equitable provision of library services. In this regard, this study analyzed the spatial accessibility of public libraries in Busan and identified the factors affecting accessibility of public libraries using spatial regression analysis. As a results of the analysis, the accessibility of public libraries in the Busan showed large deviations by region. Also, spatial distribution of public libraries had no correlation with the settled population and use of public transportation, and location of public libraries was inefficient, in terms of social equity. The results of this study will assist to understand the spatial accessibility of public libraries in Busan, to identify factors that affect the accessibility. Moreover, this study is expected to be utilized as fundamental data for releasing disparities of the spatial accessibility and selecting new location of public library in Busan.

Exploring Spatial Variations and Factors associated with Walking Practice in Korea: An Empirical Study based on Geographically Weighted Regression (지리적 가중회귀모형을 이용한 지역별 걷기실천율의 지역적 변이 및 영향요인 탐색)

  • Kim, Eunjoo;Lee, Yeongseo;Yoon, Ju Young
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.4
    • /
    • pp.426-438
    • /
    • 2023
  • Purpose: Walking practice is a representative indicator of the level of physical activity of local residents. Although the world health organization addressed reduction in prevalence of insufficient physical activity as a global target, the rate of walking practice in Korea has not improved and there are large regional disparities. Therefore, this study aimed to explore the spatial variations of walking practice and its associated factors in Korea. Methods: A secondary analysis was conducted using Community Health Outcome and Health Determinants Database 1.3 from Korea Centers for Disease Control and Prevention. A total of 229 districts was included in the analysis. We compared the ordinary least squares (OLS) and the geographically weighted regression (GWR) to explore the associated factors of walking practice. MGWR 2.2.1 software was used to explore the spatial distribution of walking practice and modeling the GWR. Results: Walking practice had spatial variations across the country. The results showed that the GWR model had better accommodation of spatial autocorrelation than the OLS model. The GWR results indicated that different predictors of walking practice across regions of Korea. Conclusion: The findings of this study may provide insight to nursing researchers, health professionals, and policy makers in planning health programs to promote walking practices in their respective communities.