• Title/Summary/Keyword: Spatial Properties

Search Result 1,146, Processing Time 0.033 seconds

Optical Properties of Porous-Si Layers on Si-substrate and its Application of Polarization Devices (Porous Si layer의 광학특성과 편광소자에의 응용)

  • Koo, K.W.;Hwang, J.H.;Shiraishi, K.;Matsumura, K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2453-2455
    • /
    • 1999
  • We propose that we use a porous-Si for a new spatial walk-off polarizing material with a large split angle. The beam-split an91e f is determined by the filling factor g(or porosity p) of the columnar dielectric substance and the slant angle $\theta$. Theoretically, by the assuming that $n_2$=3.5, and $n_1$=1 one can predict that a large split angle, up to $27^{\circ}$, is possible if one can construct such films with $Si.^{[3]}$ To accomplish this, we use porous-Si. As a result of theoretical simulation, the best structural parameters for attaining the maximum split angle $\phi$=$27.5^{\circ}$ are $\theta$=$58.7^{\circ}$ and p=57.6%.

  • PDF

The Moving Photocarrier Grating (MPG) Technique for the Transport Properties of α-Se:As Films

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jeong-Bae;Kim, Jae-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.280-283
    • /
    • 2005
  • The moving photocarrier grating (MPG) technique for the determination of the carrier mobilities and the recombination lifetime of $\alpha$-Se:As films has been studied. The electron and hole drift mobility and the recombination lifetime of $\alpha$-Se films with arsenic (As) additions have been obtained from measurement of the short circuit current density $j_{sc}$ as a function of grating velocity and spatial period. The hole mobility decreases due to defect density of hole traps when x exceeds 0.003, whereas the hole mobility increases for the case of low As addition (x$\le$0.003). We have found an increase in hole drift mobility and recombination lifetime, especially when As with (x = 0.003) is added into the $\alpha$-Se film.

Design and evaluation of a distributed TDR moisture sensor

  • Zhang, Bin;Yu, Xinbao;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1007-1023
    • /
    • 2010
  • This paper describes the development and evaluation of an innovative TDR distributed moisture sensor. This sensor features advantages of being responsive to the spatial variations of the soil moisture content. The geometry design of the sensor makes it rugged for field installation. Good linear calibration is obtained between the sensor measured dielectric constant and soil physical properties. Simulations by the finite element method (FEM) are conducted to assist the design of this sensor and to determine the effective sampling range. Compared with conventional types of moisture sensor, which only makes point measurement, this sensor possesses distributed moisture sensing capability. This new sensor is not only easy to install, but also measures moisture distribution with much lower cost. This new sensor holds promise to significantly improve the current field instruments. It will be a useful tool to help study the influence of a variety of moisture-related phenomena on infrastructure performance.

Reliability Analysis of Stochastic Finite Element Model by the Adaptive Importance Sampling Technique (적응적 중요표본추출법에 의한 확률유한요소모형의 신뢰성분석)

  • 김상효;나경웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.351-358
    • /
    • 1999
  • The structural responses of underground structures are examined in probability by using the elasto-plastic stochastic finite element method in which the spatial distributions of material properties are assumed to be stochastic fields. In addition, the adaptive importance sampling method using the response surface technique is used to improve simulation efficiency. The method is found to provide appropriate information although the nonlinear Limit State involves a large number of basic random variables and the failure probability is small. The probability of plastic local failures around an excavated area is effectively evaluated and the reliability for the limit displacement of the ground is investigated. It is demonstrated that the adaptive importance sampling method can be very efficiently used to evaluate the reliability of a large scale stochastic finite element model, such as the underground structures located in the multi-layered ground.

  • PDF

Re-production of Digital Cultural Heritage and Acquisition of Two Dimensional Drawing Maps for the Cultural Heritage by the Reverse Engineering Technology

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2016
  • After the 'Guidelines for the preservation of digital heritage' were published by UNESCO, interests in the fabrication of digital cultural heritage have been increasing throughout the world. The present study was intended to fabricate digital cultural heritages for existing cultural properties using the reverse engineering technology and obtain two-dimensional drawings. Jinju Castle Gongbukmun, which is a cultural property, was selected as a study subject and 3D modeling of Jinju Castle Gongbukmun was conducted by implementing 3D scanning and processing the point cloud data. Using the Gongbukmun 3D model (3D-Gongbukmun) made as such, requirements as a digital heritage were reviewed and 2D drawings of Gongbukmun such as front views, ground plans, and side views could be prepared.

Geospatial Technologies for Landslide Inventory: Application and Analysis to Earthquake-Triggered Landslide of Sindhupalchowk, Nepal

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Landslide is one of the natural hazards, triggered by rainfall or earthquake and it leads to damage and loss of properties and lives especially in hilly and mountainous regions. Inventory maps of the area is of much importance in order to understand the landslide phenomena in detail, conduct further studies on landslide, prepare susceptibility map and minimize risk. Inventory maps of landslides can be constructed by several methods, using multiple images through visual interpretation, using algorithms in multi-spectral or SAR images or verification from field investigation. The possible methods were explored for Sindhupalchowk district of Nepal, which was struck by massive earthquake on 2015 and landslide inventory was prepared. The inventory was analyzed for its frequency over elevation, slope aspect and dominant soil classes and also the information value for their occurrence probability.

Effect of temperature and oxygen partial pressure on the growth and development of Cu2O nanorods by radio frequency magnetron sputtering

  • You, Jae-Lok;Jo, Kwang-Min;Kim, Se-Yoon;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.102-103
    • /
    • 2013
  • As an important p-type semiconductor metal oxide with a narrow band gap (1.2 - 2.6eV), copper oxide (Cu2O) has been studied because of its various applications as material for heterogeneous catalysts, gas sensors, optical switch, lithium-ion electrode materials, field emission devices, solar cells. The fundamental properties of oxide-semiconductor can be greatly affected by the surface morphology, size, geometry and spatial orientation.

  • PDF

Fractal Image Compression using the Iterated Contractive Transformation (반복 수축 변환을 이용한 프랙탈 영상압축)

  • 윤택현;정현민;김영규;이완주;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.99-108
    • /
    • 1994
  • In this paper an image compression technique based on fractal theory using iterated contractive transformation is analysed and an improved image coder is suggested. Existing methods used the classifier proposed by Ramamurthi and Gersho which utilize the properties of neighboring pixels in the spatial domain. In this paper DCT-based classification is applied to 512$\times$512 images and PSNR improvement of 0.4~2.7 dB is obtained at lower bit rate over conventional algorithms. In addition the effect of varying the domain block size and quantization step size of the luminance shift parameter on the compression ratio and the image quality is compared and analysed.

  • PDF

Cosmic Evolution of Submillimeter Galaxies and Their Effects on the Star Formation Rate Density

  • Kim, Sungeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.27-27
    • /
    • 2013
  • Development of bolometer array and camera at millimeter and submillimeter wavelengths plays an important role for detecting submillimeter galaxies (SMGs) which appear to be very bright at the submillimeter and millimeter wavelengths. These SMGs, luminous infrared galaxies detected at mm/submm wavelengths seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates (SFRs) if there is a close link between the SMG phenomena and the star formation activities and the interstellar dust in galaxies is mainly heated by the star light. In this talk, we review assembly of SMGs compiled with observations using the bolometer arrays and cameras and investigate their spectral energy distribution fits including the data at other wavelengths which trace the photometric properties and the red-shift distribution of galaxies. We find that these bright SMGs significantly contribute to the cosmic star formation rate density at red-shifts of 2-3 (about 8 %) for the spatial distribution of these galaxies.

  • PDF

Chromospheric Canopy Fields over a Flux Emergence Region as a Key Condition for Formation of the Sunspot Penumbra

  • Lim, Eun-Kyung;Yurchyshyn, Vasyl;Goode, Philip;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2013
  • A presence of a penumbra is one of the main properties of a mature sunspot, and its formation mechanism has been elusive due to a lack of observations that fully cover the formation process. Utilizing the New Solar Telescope at the Big Bear Solar Observatory, we observed the formation of a partial penumbra for about 7 hours simultaneously at the photospheric (TiO; $7057{\AA}$) and the chromospheric ($H{\alpha}$, $-1{\AA}$) spectral lines with high spatial and temporal resolution. From this uninterrupted, long observational sequence, we found that flux emergence under the stable chromospheric canopy fields resulted in penumbra formation, while emerging flux under the expanding chromospheric fields appeared as transient elongated granules. Based on these findings, we suggest a possible scenario for penumbra formation in which a penumbra forms when the emerging flux is constrained from continuing to emerge, but rather is trapped at the photospheric level by the overlying chromospheric canopy fields.

  • PDF