• Title/Summary/Keyword: Spatial Properties

Search Result 1,146, Processing Time 0.031 seconds

Site-specific Quantification and Management of Soil Compaction: A Review (토양 다짐 변이 측정 및 관리기술에 관한 연구동향)

  • Chong, B.H.;Chung, S.O.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.24-32
    • /
    • 2006
  • Compaction is becoming a greater concern in crop production and the environment because it can have deleterious effects on growing conditions that are difficult to remediate. Because compaction can vary considerably from point to point within a field, and also from depth to depth within the soil profile, it is important to consider quantification and management of the spatial and vertical variability in soil compaction when developing an overall site-specific crop management plan. In this paper, the importance of soil compaction, techniques for quantification of its variability, and the concept of site-specific tillage are examined. Methods and systems to detect within-field variation in soil strength as a surrogate measure of soil compaction and related soil properties are also compared and discussed. Quantification of variability in soil compaction and site-specific compaction management was motivated recently, and sensors and control systems are still under development. Future study will need to address a number of issues related to understanding and applying the sensor measurements.

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

A Novel Filter ed Bi-Histogram Equalization Method

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.691-700
    • /
    • 2015
  • Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

Sound Radiation Analysis of Tire under The Action of Moving Line Forces (이동분포하중을 받는 타이어의 음향방사 해석)

  • Kim, Byoung-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.529-532
    • /
    • 2011
  • A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of vehicle tires under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dash pots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The expression for sound power is integrated numerically and the results examined as a function of Mach number, wave-number ratio and stiffness factor. The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the Spatial Transformation of Sound Field techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.

  • PDF

Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Choi, Jae-Ick;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.227-230
    • /
    • 2005
  • A specific anthropomorphic mannequin (SAM) model was used to investigate the relation between local specific absorption rate (SAR) and head size. The model was scaled to 80 to 100% sized models at intervals of 5%. We assumed that the shell of the SAM model has the same properties as the head-equivalent tissue. Five handsets with a monopole antenna operating at 835 MHz were placed in the approximate cheek position against the scaled SAM models. The handsets had different antenna lengths, antenna positions, body sizes, and external materials. SAR distributions in the scaled SAM models were computed using the finite-difference time-domain method. We found that a larger head causes a distinct increase in the spatial peak 1-voxel SAR, while head size did not significantly change the peak 1-g averaged-SAR and 10-g averaged-SAR values for the same power level delivered to the antenna.

  • PDF

Modification of a cosmological hydrodynamic code for more realistic baryonic physics

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2014
  • structure of matters of Lambda cold dark matter (CDM) cosmology on detailed numerical simulations. To accomplish our research goal, we have added the following baryonic physics on the existing cosmological hydrodynamic code, Gadget-2: 1) radiative heating and cooling, 2) reionization of the Universe and UV shielding, 3) star formation, 4) energy and metallicity feedback by supernova. In addition, we included cluster formation to distinguish clustered star formation inside the very high density gas clumps from the field star formation. Our simulations cover a cubic box of a side length 4Mpc/h with 130 million particles. The mass of each particles is $3.4{\times}104Msun$, thus the GCs can be resolved with more than hundreds particles. We discuss various properties of the GCs such as mass function, specific frequency, baryon-to-dark matter ratio, metallicity, spatial distribution, and orbit eccentricity distribution as functions of redshift. We also discuss how the formation and evolution of the GCs are affected by UV shielding.

  • PDF

Simultaneous Monitoring of KVN 4 Bands toward Evolved Stars

  • Cho, Se-Hyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.112.2-112.2
    • /
    • 2014
  • We propose simultaneous monitoring observations of 22 GHz $H_2O$ and 43/86/129 GHz SiO masers toward ~15 evolved stars in order to investigate spatial structure and dynamical effect from SiO to $H_2O$ maser regions including mass-loss process and development of asymmetry in circumstellar envelopes. We also aim at investigating mutual association and difference between SiO and $H_2O$ masers for establishing SiO and $H_2O$ maser models coupled to hydrodynamical model of circumstellar envelope. In addition, the correlation and difference of SiO maser properties among J=1-0, J=2-1, and J=3-2 transition masers are traced according to different type of stars for constraining SiO pumping models. These scientific goals and target sources were determined based on KVN single dish and VLBI feasibility test observations at 4 bands. As a total observing time of every 2 month monitoring, about 90 and 360 hours (in average per year) are required for single dish and VLBI observations, respectively. From the 2014B observing season, these monitoring observations will be derived as one of KVN key science programs.

  • PDF

Self-Regulation of Star Formation Rates: an Equilibrium Vieww

  • Kim, Chang-Goo;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2016
  • In this talk, I will present a theoretical and numerical framework for self-regulation of the star formation rates (SFRs) in disk galaxies. The theory assumes (1) force balance between pressure support and the weight of the interstellar medum (ISM), (2) thermal balance between radiative cooling in the ISM and heating via FUV radiation from massive young stars, and (3) turbulent energy balance between dissipation in the ISM and driving by momentum injection of SNe. Numerical simulations show vigorous dynamics in the ISM at all times, but with proper temporal and spatial averages, all the expected balances hold. This leads to a scaling relation between mean SFRs and galactic gas and stellar properties, arising from the fundamental relationship between SFR surface density and the total midplane pressure.

  • PDF

Emotionally Charged Field Dynamics of Lived Space (생활 공간의 정서적 장역학)

  • 김영철
    • Journal of the Korean housing association
    • /
    • v.11 no.2
    • /
    • pp.13-23
    • /
    • 2000
  • Lived space, i.e. space as we experience it in our mundane life, does not exist independently of material objects: it is defined, delimited and made sensible by them. Concrete spaces so manifest are not sterile and neutral homogeneous voids. Not only do they interact with material objects but also influence our feelings and behaviour, constituting emotionally charged fields. This field dynamics of space is readily observed in the phenomenon of place as well as in the etymology and usage of the word 'place'. Each space is pervaded by a particular mood or atmosphere in accordance with its size and shape as well as with the perceptual properties of its constituent objects. Moreover, within each space the atmosphere also changes depending on the location. Space then can be thought of as a nonhomogeneous field of emotional energy. The fact that one is attracted to some places and repulsed by others may be described as one's being subject to invisible forces of pulls and pushes, attractions and repulsions. Out spatial environment is therefore a field of forces of varying directions and magnitudes.

  • PDF

A progressive image transmission system based on wavelet (웨이브렛 기반 점진적 영상 전송 시스템)

  • 윤국진;조숙희;안충현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.263-266
    • /
    • 2003
  • In this paper, we propose a new progressive image transmission system including the image coding scheme that efficiently uses the relationship between the properties of a spatial image and its wavelet transform. Firstly, an original image is decomposed into several layers by the wavelet transform, and simultaneously decomposed into 2"x2" blocks. Each image is classified into two image types according to the standard deviations of its blocks. And then each block is categorized into two regions by different thresholds according to the image types, i.e., significant activity region (SAR) and insignificant activity region (IAR). Simulation results show that the proposed coding method has better performance than the EZW and SPIHT in terms of image quality and transmitted bit-rate. In addition, it can be applied to the applications requiring the progressive image transmission.nsmission.

  • PDF