• Title/Summary/Keyword: Spatial Object Model

Search Result 292, Processing Time 0.027 seconds

Implementation of Uncertainty Processor for Tracking Vehicle Trajectory (차량 궤적 추적을 위한 불확실성 처리기 구현)

  • Kim, Jin-Suk;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1167-1176
    • /
    • 2004
  • Along the advent of Internet technology, the computing environment has been considerably changed in many application domains. Especially, a lot of researches for e-Logistics have been done for the last 3 years. The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. To construct effectively the e-Logistics framework, researches on the development of the Moving Object Technology(MOT) including GPS and GIS with spatiotemporal databases technique so far has been done The Moving Object Technology stands for the efficient management for the spatiotemporal objects such as vehicles, airplanes, and vessels which change continuously their spatial location along with time flows. However, most systems manage just only the location information detected lately by many reasons so that the uncertainty processing for the past and future location of the moving objects is still very hard. In this paper, we propose the moving object uncertainty model and system design for e-Logistics applications. The MOMS architecture in e-Logistics is suggested and the detailed explain of sub-systems including the uncertainty processor of moving objects is described. We also explain the comprehensive examples of MOMS and uncertainty processing in Delivery Parcel Application that is one of major application of e-Logistics domain.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

Generation of 3D Digital Map Using Photogrammetrically Compiled Data and Development of Editing System (도화원도 데이터를 이용한 3차원 수치지도 생성과 편집 시스템 개발)

  • Lee Dong-Cheon;Ryu Keun-Hong;Son Eun-Jeong;Kim Ho-Seong;Moon Yong-Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.359-367
    • /
    • 2006
  • A map is defined as model of 3D spatial phenomena of the real world. Because most of the maps are represented on the 2D plane, limited information is provided. In consequence, applications are also limited with 2D maps and map users of various fields require 3D form of map. Without doubt, state-of-the-art information technology such as telematics and ubiquitous is location based system, therefore, role of the 3D mapping is getting more significant. It is obvious that 3D maps provide more visual perception than 2D maps. The main object of this stud)r is focused on generation of 3D digital maps in economical and efficient way using photogrammetrically compiled data. Topographic maps are required updating and revision in a certain period and the period is getting shorter Therefore, development of the map editing system is key issue for maintaining quality and updating of the maps to provide reliable geographic information. Special requirements should be taken account into 3D digital map editing. Therefore. design, configuration and functions of the editing system were explored.

  • PDF

Differential analysis of the surface model driven from lidar imagery (라이다영상으로부터 유도된 지표모델의 2차 차분분석)

  • Seo, Su-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.298-302
    • /
    • 2010
  • This study proposes a differential method to analyze the properties of the topographic surface driven from lidar imagery. Although airborne lidar imagery provides elevation information rapidly, a sequence of extraction processes are needed to acquire semantic information about objects such as terrain, roads, trees, vegetation, and buildings. For the processes, the properties present in a given lidar data need to be analyzed. In order to investigate the geometric characteristics of the surface, this study employs eigenvalues of the Hessian matrix. For experiments, a lidar image containing university campus buildings with the point density of about 1 meter was processed and the results show that the approach is effective to obtain the properties of each land object Surface.

  • PDF

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface

Paradigm of the Transformation of Potential-Forming Space Under the Impact of Intellectual-Innovation Determinants

  • Khanin, Semen;Derhaliuk, Marta;Stavroyany, Serhii;Kudlasevych, Olga;Didkivska, Lesia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.340-346
    • /
    • 2022
  • The article examines the formation of the scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants. Based on the study of different scientific views on the nature and properties of potential-forming space through the study of approaches to understanding the concept of "space" clarified the complexity and multifaceted nature of the phenomenon and found that its characteristics are relevant to the industrial development model. It is revealed that the leading modern trends related to the spread of globalization and regionalization, rapid development of information and communication technologies, diffusion of innovations accompany the transition from industrial to post-industrial development and its development, which leads to new development: changes production, nature and relations between business entities, etc. It is proved that under such conditions, the region as a key element of the economic system, acquires a leading role in achieving sustainable and balanced development. These processes significantly affect the potential-forming space of the regional economy under the influence of intellectual and innovative determinants, leading to the need for its transformation and change in accordance with modern realities, which is reflected in thorough research on the formation of scientific paradigm based on the formation of its theoretical foundations and methodological basis. This study reveals the essence, role, functions, structure, process of formation of the scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants. It is proved that the formation of the modern scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants occurs in the context of building a post-industrial model of development, accompanied by consideration of the region as a spatial object territories from the physical plane to the spatial environment in which the development of human capital, innovation and self-development of the region. Taking into account the above, the article outlines the prerequisites and factors of formation of the scientific paradigm of transformation of the potential-forming space of the regional economy under the influence of intellectual and innovative determinants.

A Study on the Integrated System Implementation of Close Range Digital Photogrammetry Procedures (근거리 수치사진측량 과정의 단일 통합환경 구축에 관한 연구)

  • Yeu, Bock-Mo;Lee, Suk-Kun;Choi, Song-Wook;Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.1 s.13
    • /
    • pp.53-63
    • /
    • 1999
  • For the close range digital photogrammetry, multi-step procedures should be embodied in an integrated system. However, it is hard to construct an Integrated system through conventional procedural processing. Using Object Oriented Programming(OOP), photogrammetric processings can be classified with corresponding subjects and it is easy to construct an integrated system lot digital photogrammetry as well as to add the newly developed classes. In this study, the equation of 3-dimensional mathematic model is developed to make an immediate calibration of the CCD camera, the focus distance of which varies according to the distance of the object. Classes for the input and output of images are also generated to carry out the close range digital photogrammetric procedures by OOP. Image matching, coordinate transformation, dirct linear transformation and bundle adjustment are performed by producing classes corresponding to each part of data processing. The bundle adjustment, which adds the principle coordinate and focal length term to the non-photogrammetric CCD camera, is found to increase usability of the CCD camera and the accuracy of object positioning. In conclusion, classes and their hierarchies in the digital photogrammetry are designed to manage multi-step procedures using OOP and close range digital photogrammetric process is implemented using CCD camera in an integrated System.

  • PDF

Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5 (라즈베리파이와 YOLOv5를 이용한 해양쓰레기 시계열 변화량 분석)

  • Bo-Ram, Kim;Mi-So, Park;Jea-Won, Kim;Ye-Been, Do;Se-Yun, Oh;Hong-Joo, Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1249-1258
    • /
    • 2022
  • Marine debris is defined as a substance that is intentionally or inadvertently left on the shore or is introduced or discharged into the ocean, which has or is likely to have a harmful effect on the marine environments. In this study, the detection of marine debris and the analysis of the amount of change on marine debris were performed using the object detection method for an efficient method of identifying the quantity of marine debris and analyzing the amount of change. The study area is Yuho Mongdol Beach in the northeastern part of Geoje Island, and the amount of change was analyzed through images collected at 15-minute intervals for 32 days from September 12 to October 14, 2022. Marine debris detection using YOLOv5x, a one-stage object detection model, derived the performance of plastic bottles mAP 0.869 and styrofoam buoys mAP 0.862. As a result, marine debris showed a large decrease at 8-day intervals, and it was found that the quantity of Styrofoam buoys was about three times larger and the range of change was also larger.

The Efficient Measurement Method of Buried Heritage by 3D Image Acquisition (3차원 영상취득에 의한 매장문화재의 효율적 측정기법)

  • Lee, Kye-Dong;Lee, Jae-Kee;Jung, Sung-Heuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • Recently, industrialization of a country is accelerated and request of society infrastructure is raised so national land development is activity view. Accordingly, the search for a wide-ranging buried heritage do acted in large construction region. Because the buried heritage get buried in land that it is necessary to the precision search and research for a record and a preservation. Until now, Surveying techniques of a historic site have made status map, profile and cross section map through leveling survey, total-station survey and sketch of specialist. So, to solve problems existing relic survey or drawing making method have using digital camera these researches rapidly and economically obtain stereo image of object and present a technique that constructs 3D image model for digital photogrammetry method. Also, these researches construct 3D image model for record and preservation of a historic site through site test and in 3D and graphical express a historic site and support works that produce other maps if we need it. offer base data of GIS (Geographic Information System) to collect and analyze overall, information of a historic site.