이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.
최근 스마트폰 내비게이션의 그룹주행, 위치공유 등 다양한 최신 기능을 사용하기 위해서 스마트폰 내비게이션을 이용하는 사람들이 많이 증가하였다. 하지만, 스마트폰에는 다양한 목적을 가진 많은 앱이 설치되기 때문에 하나의 앱이 사용할 수 있는 저장 공간이 한정적이다. 그래서 내비게이션 전용기기에서 맵매칭을 수행하기 위해 사용되는 용량이 큰 도로네트워크 데이터를 스마트폰에 저장할 수 없기 때문에 맵매칭을 할 수 없다. 또한, 외부 GPS 장치를 사용하지 않는 스마트폰의 경우 내비게이션 전용기기에 비해 GPS 위치측위가 부정확하다. 이러한 문제점으로 스마트폰 내비게이션은 정확한 위치 안내를 하지 못하고 있다. 이에 본 연구의 목적은 스마트폰 내비게이션에서 정확한 위치 안내를 위해 내비게이션 전용기기에서 사용되는 도로네트워크 정보를 새로운 도로네트워크 포맷 설계 및 변환으로 용량을 감소시키고 운전자의 운전 패턴 데이터를 데이터베이스화하여 기존 내비게이션 전용기기 맵매칭 보다 정확한 맵매칭을 하는 것이다. 결과적으로 맵매칭이 어려운 여러 도로가 만나는 교차로, 고속도로에 인접한 좁은 도로, GPS 오차가 많이 발생하는 빌딩 숲 등에서 내비게이션 전용기기와 비교분석을 통해 스마트폰에서 기존 내비게이션 전용기기보다 80% 이상의 작은 저장 공간의 사용으로 보다 정확한 맵매칭이 가능했으며 향후 내비게이션뿐만 아니라 GPS 위치측위와 지도를 사용하는 다양한 앱에서 더욱 정확한 위치기반 서비스가 가능할 것으로 판단된다.
본 연구는 지리정보시스템(GIS) 환경에서 확률 모델인 Weight Of Evidence (WOE)와 Evidential Belief Function (EBF), 기계학습 모델인 Artificial Neural Networks (ANN) 모델을 이용하여 평창지역의 산사태 취약성도를 공간적으로 분석하고 예측하였다. 본 연구지역은 2006년 태풍 에위니아에 의한 집중호우로 산사태가 많이 발생하여 많은 재산 및 인명피해가 발생하였다. 산사태 취약성도를 작성하기 위해 항공사진을 이용하여 3,955개의 방대한 산사태 발생 위치를 탐지하였고, 환경공간정보인 지형, 지질, 토양, 산림 및 토지이용 등의 공간 데이터를 수집하여 공간데이터베이스에 구축하였다. 이러한 공간데이터베이스를 이용하여 산사태에 영향을 줄 수 있는 인자 17개를 추출하여 입력 인자와 EBF, WOE, ANN 모델을 이용하여 산사태 취약성도를 작성하고 검증하였다. 작성 및 검증을 위해 산사태 자료는 각각 50%씩 나누어서 훈련 및 검증을 실시하였고, 검증결과 WOE 모델의 경우는 74.73%, EBF 모델의 경우는 75.03%, ANN 모델의 경우는 70.87%의 예측 정확도를 나타내었다. 본 연구에 사용된 모델 중 EBF 모델이 가장 높은 정확도를 나타냈으며, 모든 모델에서 70% 이상의 예측 정확도를 보여 본 연구에서 사용된 기법이 산사태 취약성도 작성에 유효함을 나타내었다. 본 연구에서 제안된 WOE, EBF, ANN 모델과 산사태 취약성도는 이전에 산사태가 발생하지 않은 지역의 산사태를 예측하는 데 사용될 수 있다. 이러한 취약성도는 산사태 위험 감소를 촉진하고, 토지 이용 정책 및 개발을 위한 기초자료 역할을 할 수 있으며, 궁극적으로 산사태 재해 예방을 위한 시간과 비용을 절약할 수 있다. 향후 보다 많은 지역에서 산사태 취약성도 작성 방법을 적용하여 산사태 위험 예측을 위한 일반화된 모델을 이끌어 내야 한다.
The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and apply the newly developed techniques for assessment of landslide susceptibility to study areas, Yongin. Landslide locations detected from interpretation of aerial photo and field survey, and topographic, soil and geological maps of the Yongin area were collected. The data of the locations of land-slide, slope, soil texture, topography and lithology were constructed into spatial database using GIS. Using the factors, landslide susceptibility was analyzed by artificial neural network methods. The results of the analysis were verified using the landslide location data. The validation results showed satisfactory agreement between the susceptibility map and landslide location data.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권7호
/
pp.2359-2376
/
2022
With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.
본 연구의 목적은 2002년 산사태가 많이 발생한 강원도 강릉 지역의 산사태 발생원인에 대해 인공신경망 기법과 GIS를 이용하여 취약성도를 작성 및 이를 검증하는 것이다. 이를 위해 지형도, 토양도, 임상도, 지질도, 토지피복도 등 을 GIS를 이용하여 공간 데이터베이스로 구축하였고, 이러한 데이터베이스로부터, 경사, 경사방향, 곡률, 수계, 지형종 류, 토질, 토양모재, 토양배수, 유효토심, 임상종류, 임상경급, 임상영급, 임상밀도, 암상, 토지피복도, 선구조도 등을 추 출하여 산사태 발생요인으로 이용하였다. 이러한 데이터베이스와 산사태 발생 위치에 대해 인공신경망 기법을 적용하 여 산사태 발생 원인에 대해 상대적인 가중치를 계산하고, 이를 적용하여 산사태 취약성도를 만들었다. 그리고 계산 된 산사태 취약성도는 산사태 발생을 정량적으로 예측하는 비곡선 방법을 이용하여 검증되었다. 이러한 결과는 산사 태 피해 예방을 위한 방재 사업, 국토개발 계획, 건설계획 등에 기초 자료로서 활용될 수 있다.
버스정보시스템은 실시간으로 버스 위치를 파악하여 정류장 안내기, 인터넷, 모바일 서비스 등을 통해 대중교통 이용 승객에게 버스운행 상황을 제공하는 도착 안내 정보 시스템이다. 신뢰성 있는 버스정보시스템의 구현과 정보 유지를 위해서는 기반정보 DB의 품질 관리를 통한 교통 정보의 질적 향상은 매우 중요하다. 이에 본 연구의 목적은 버스 기반정보 데이터의 각 절차 별 성과물의 데이터 품질을 정량적으로 평가하기 위한 기준을 정립하고 품질 관리 방안을 제시하는 것이다. 이를 위한 연구의 내용으로 우선, 국토해양부 실시간 환승 교통 종합정보(TAGO : Transport Advice GOing anywhere) 시스템의 기반정보 DB를 사례로 버스 네트워크 DB를 구축함에 따라 발생할 수 있는 논리적, 형상적 오류를 유형화하였다. 또한, 이에 대한 항목별 검수 방법과 절차에 대한 기준을 정립하고 일관적이고 체계적인 품질 관리 방안을 제시하였다. 연구 결과로서, 버스 기반 정보의 객관적이고 신뢰성 있는 품질확보가 가능 하였으며, 이를 통해 시스템 운영상의 오류 야기를 사전에 방지하여 보다 정확한 대중교통 정보 제공과 버스정보시스템의 신뢰도 향상에 기여할 것으로 기대된다.
u-GIS 환경에서는 센서 네트워크를 통해 필요한 공간 데이터를 수집하고 이를 실시간 처리 및 가공 또는 기 저장되어 있는 정보와 함께 유통된다. 웹 기반 응용서비스 등에서 인터넷 망을 통한 정보가 요청되는 경우 표준 문서인 XML로 전달된다. 특히 요청되는 정보에 공간 데이터가 포함되는 경우 공간데이터 처리가 가능한 GML, S-XML 등의 문서가 사용된다. 이 과정에서 DSMS에서와 같이 실시간 처리된 스트림데이터는 S-XML 문서 형태로 변환되고, 웹 기반의 공간정보 응용서비스는 인터넷 망을 통해 S-XML 문서를 전달받는다. 대부분의 공간정보 응용서비스는 저장시스템으로 기존의 공간 데이터베이스 관리 시스템을 사용하기 때문에 S-XML 데이터와 SDBMS에서 사용되는 데이터간의 상호 변환과정이 필요하다. 본 논문에서는 공간 데이터의 캐싱을 이용한 S-XML 변환 기법을 제안한다. 제안 기법은 공간 정보유통을 위한 S-XML과 관계형 공간 데이터베이스와의 효율적인 변환을 위해, S-XML에서 공간 데이터에 해당하는 부분을 캐싱하고, 동일 지역의 공간데이터에 대한 변환이 요구될 경우 캐시 데이터를 재사용하여 별도의 변환 비용 없이 변환한다. 제안 기법을 통해 u-GIS 환경에서 공간정보의 유통을 위한 S-XML 문서와 이를 이용하는 웹 기반 공간정보 응용서비스 사이의 변환 비용을 감소하였으며, 성능평가를 통하여 질의 처리 성능이 향상됨을 보인다.
도시의3차원적인 성장 및 건물의 대형화, 복잡화에 따라 3차원 정보에 대한 요구가 증가하고 있다. 이와 더불어 위치기반안내, 경로탐색 또는 비상탈출 등과 같은 유비쿼터스 컴퓨팅의 기초데이터로써 3차원 GIS의 활용에 대한 관심 또한 증가하고 있다. 반면에 대부분의3차원 모델링 기술은 건물이나 지형의 시각적인 표현에 초점을 맞추고 있으며 공간분석에서 요구되는 위상구조는 갖고 있지 않다. 본 연구에서는3차원 모델에 위상구조를 적용하는 방법으로 2차원 GIS와 3차원 모델의 연동을 제시하고자 한다. 3차원 모델의 공간별로 분리된 객체를 상응하는 2차원 GIS 레이어의 피쳐와 데이터베이스의 레코드를 통해 연계하고 이로써 3차원 객체간의 관계를 정의하였다. 또한 2차원과 3차원이 연동된 건물모델의 복도네트워크를 구축하였다. 마지막으로 연동된 3D모델을 이용하여 건물내부에서 최적 경로분석을 몇 가지 시나리오를 통해 실시하였다.
책자형태의 대학시설물 도면에서 공간정보의 부정확, 도면의 유지보수의 한계, 현장에서 유지보수 등 작업과 GIS-DB구축간에 이원화된 작업으로 인한 경제적 비효용 등이 문제점으로 지적되어왔다 본 연구에서는 이러한 문제에 대한 대안을 제시하기 위해 시설물 도면을 현장 실무자가 작업현장에서 실시간으로 입·출력하는 시스템의 도입가능성을 평가하고자 하였다. 제안된 기법은 무선 네트워크, 이동 컴퓨팅 등의 최근 정보 통신 환경의 변화 동향을 바탕으로 PDA를 기반으로 하여 작업현장에서 도면을 수정·갱신할 수 있는 실시간 Mobile GIS를 상정하였다. 구축된 시스템을 평가하기 위한 기준에는 다양한 관점이 있을 수 있으나 본 연구에서는 대학시설물 관리자가 기존의 시스템에서 직면한 문제를 해소할 수 있는 지 여부에 주안점을 두고 3종류의 품질 평가기준이 도출되었다: (1) 데이터 검색 (2) 공간분석 (3) 실시간 데이터 갱신. 실제 서비스를 수행하면서 평가기준에 의거 시스템의 가능성을 검증하여 보았다. 본시스템을 이용함으로써 현지 작업인력이 시설물 점검 등 관련업무에서 보다 정확한 위치정보를 확보할 수 있게 되었다. 아울러 작업과정에서 다양한 도면을 실시간으로 직접 확인하여 현재 시설물 상황과 비교함으로서 시설물의 시·공간적 변화 추이를 반영한 공간분석이 이루어질 수 있었다. 또한 이동 컴퓨팅에 의거한 시스템을 통해 작업현장에서 실시간으로 GIS 데이터베이스를 구축할 수 있게 되었다. 본 연구는 실제적인 실시간 Mobile GIS 도입을 위한 개념 및 요구 사항, 구조, 동작 모델에 대해 향후 무선통신 등 관련 기술이 일반화되었을 경우를 대비한 기초연구를 수행하였다는데 큰 의의가 있을 것이다. 본 연구가 전통적인 책자도면 기반의 대학시설물 관리의 한계를 극복할 수 있는 계기가 되어 적은 인력과 예산으로도 대학시설물에 대하여 표준화된 실시간 GIS구축에 중요한 참고자료가 될 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.