• Title/Summary/Keyword: Spatial Interpolation

Search Result 411, Processing Time 0.024 seconds

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.

Image Restoration Algorithm using Lagrange Interpolation in Mixed Noise Environments (복합잡음 환경에서 Lagrange 보간법을 이용한 영상복원 알고리즘)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.455-462
    • /
    • 2015
  • Image media is used for the internet, computers and digital cameras as part of the core services of multimedia. Digital images can be easily acquired and processed, due to the development of digital home appliances and personal computers' application software. However, image degradation occurs by various external causes in the acquisition, processing and transmitting process of digital images, and its main cause is known to be noise. Therefore, this study proposed and conducted the simulation of image restoration filter algorithm that processes impulse noise and Gaussian noise by applying Lagrange interpolation and spatial weighted method according to distance, respectively. The proposed algorithm improved 8.77[dB], 8.83[dB] and 10.02[dB], respectively, compared to existing A-TMF, AWMF and MMF, as a result of processing by applying the damaged Girl images to impulse noise(P=60%) and Gaussian noise(${\sigma}=10$).

Analysis of the Distribution Pattern of Seawater Intrusion in Coastal Area using the Geostatistics and GIS (지구통계기법과 GIS를 이용한 연안지역 해수침투 분포 파악)

  • 최선영;고와라;윤왕중;황세호;강문경
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • Distribution pattern of seawater intrusion was analyzed from the spatial distribution map of chloride using the geostatistics and CIS analyses. The chloride distribution map made by kriging(ordinary kriging and co-kriging) after exploratory spatial data analysis. Kriging provides an advanced methodology which facilitates quantification of spatial features and enables spatial interpolation. TDS, Na$^{+}$, Br$^{[-10]}$ were selected as second parameters of co-kriging which is higher value of correlation coefficients between chloride and others groundwater properties. Chloride concentration is highest in yeminchon and coastal area. And result in co-kriging was accurate than ordinary kriging.

  • PDF

An Efficient Deinterlacing Algorithm Using New Edge-Directed Interpolation (새로운 에지 방향 보간법을 이용한 효율적인 디인터레이싱 알고리듬)

  • Kim, Min-Ki;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.185-192
    • /
    • 2007
  • The interpolation is used in many image processing applications such as image enhancement, de-interlacing/scan-rate conversion, wavelet transforms based on the lifting scheme, and so on. Among these, de-interlacing and scan-rate conversion are proposed for the digital TV applications. The de-interlacing algorithm can be classified into two categories. The first one uses only one field, called intra-field de-interlacing, and the other uses multiple field, called inter-field de-interlacing. In this paper, an efficient de-interlacing algorithm using spatial domain information is proposed far the interpolation of interlaced images. By efficiently estimating the directional correlations, improved interpolation accuracy has been achieved. In addition, the proposed method is simply structured and is easy to implement. Extensive simulations conducted for various images and video sequences have shown the efficacy of the proposed method with significant improvement over the previous intra-field do-interlacing methods in terms of the objective image quality as well as the subjective image quality.

New Adaptive Interpolation Based on Edge Direction extracted from the DCT Coefficient Distribution (DCT 계수 분포를 이용해 추출한 edge 방향성에 기반한 새로운 적응적 보간 기법)

  • Kim, Jaehun;Kim, Kibaek;Jeon, Gwanggil;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Nowadays, video technology has been successfully improved creating tremendous results. As video technology improve, multimedia devices and demands from users are diversified. Therefore, a video codec used in these devices should support various displays with different resolutions. The technology to generate a higher resolution image from the associated low-resolution image is called interpolation. Interpolation is generally performed in either the spatial domain or the DCT domain. To use the advantages of both domains, we have proposed the new adaptive interpolation algorithm based on edge direction, which adaptively exploits the advantages of both domains. The experimental results demonstrate that our algorithm performs well in terms of PSNR and reduces the blocking artifacts.

Comparison of Precipitation Distributions in Precipitation Data Sets Representing 1km Spatial Resolution over South Korea Produced by PRISM, IDW, and Cokriging (PRISM, 역거리가중법, 공동크리깅으로 작성한 1km 공간해상도의 남한 강수 자료에서 강수 분포의 비교)

  • Park, Jong-Chul;Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.147-163
    • /
    • 2013
  • The purpose of this study is to compare precipitation distributions in precipitation data sets over South Korea produced by three interpolation methods. The differences of precipitation caused by interpolation methods is an important information when the interpolated precipitation data sets were used in researches such as ecological and hydrological modeling as well as regional climate impact studies. In this study, the precipitation data sets were produced by IDW(Inverse Distance Weighting) and Cokriging in this study and the PRISM(Precipitation-elevation Regressions on Independent Slopes Model) data set obtained from Climate Change Information Center of Korea. The spatial resolution of the precipitation data is 1km. As a result, there was a great precipitation difference caused by interpolation methods in data of mountainous watersheds in general. Especially the difference of monthly precipitation was 10~20% or more in the mountainous watersheds near the Military Demarcation Line dividing North and South Korea, Mt. Sobaik, Mt. Worak, Mt. Deogyu, Mt. Jiri and Taeback Mountain Range. It means that a final result of a research can be affected by adopted interpolation method when an interpolated precipitation data set is used in the research for the these study sites.

A Study on Interpolation methods and size of grid to the various topographical characteristics for the construction of DEM(Digital Elevation Model) (수치표고모형(DEM) 구축을 위한 지형별 보간 방법 및 격자크기에 관한 연구)

  • Woo, Je-Yoon;Koo, Jee-Hee;Hong, Chang-Hee;Kim, Tae-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.2 s.6
    • /
    • pp.5-19
    • /
    • 2001
  • We are able to construct and utilize DEM(Digital Elevation Model) throughout the NGIS(National Geographic Information System) project. It is important that interpolation methods and appreciate size of grid for the construction of accurate DEM(Digital Elevation Model). There were several references related to the DEM(Digital Elevation Model) construction method, however they couldn't consider various topographical characteristics in the korea. In this study, we recommended that suitable interpolation method for each topographic element. After dividing Poonggi area into mountain, hill, urban, agricultural land, we constructed DEM(Digital Elevation Model) with various interpolation methods and grid size using 1:5,000 digital map. Then evaluated accuracy using elevation data which extracted from air-photo. The interpolation methods were analyzed and compared for various topographical conditions. As a result, Kriging method was superior to TIN method for all the topographical conditions. Another experiment was performed to examine optimal grid space for DEM with each topographical condition. 10m grid space was most suitable for mountain area and hilly districts, while 30m grid space was most suitable for urban area and farm land.

  • PDF

Analysis on the Effect of Spatial Distribution of Rainfall on Soil Erosion and Deposition (강우의 공간분포에 따른 침식 및 퇴적의 변동성 분석)

  • Lee, Gi-Ha;Lee, Kun-Hyuk;Jung, Kwan-Sue;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.657-674
    • /
    • 2012
  • This paper presents the effect of spatially-distributed rainfall on both rainfall-sediment-runoff and erosion or deposition in the experimental Cheoncheon catchment: upstream of Yongdam dam basin. The rainfall fields were generated by three rainfall interpolation techniques (Thiessen polygon: TP, Inverse Distance Weighting: IDW, Kriging) based only on ground gauges and two radar rainfall synthetic techniques (Gauge-Radar ratio: GR, Conditional Merging: CM). Each rainfall field was then assessed in terms of spatial feature and quantity and also used for rainfall-sediment-runoff and erosion-deposition simulation due to the spatial difference of rainfall fields. The results showed that all the interpolation methods based on ground gauges provided very similar hydrologic responses in spite of different spatial pattern of erosion and deposition while raw radar and GR rainfall fields led to underestimated and overestimated simulation results, respectively. The CM technique was acceptable to improve the accuracy of raw radar rainfall for hydrologic simulation even though it is more time consuming to generate spatially-distributed rainfall.

Spatial Distribution Analysis of Metallic Elements in Dustfall using GIS (GIS를 이용한 강하분진 중 금속원소의 공간분포분석)

  • 윤훈주;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.463-474
    • /
    • 1997
  • Metallic elements in dustfall have been known as notable air pollutants directly or indirectly influencing human health and wealth. The first aim of this study was to obtain precise spatial distribution patterns of 5 elements (Pb, Zn, K, Cr, and Al) in dustfall around Suwon area. To predict isometric lines of metal fluxes deposited on unsupervised random sites, the study has applied both spatial statistics as a receptor model and a GIS (geographic information system). Total of 31 sampling sites were selected in the study area (roughly 3 by 3 km grid basis) and dustfall samples were then collected monthly basis by the British deposit gauges from Dec., 1995 to Nov., 1996. The metallic elements in the dustfall were then analyzed by an atomic absorption spectrometer (AAS). On the other hand, a base map overlapped by 7 layers was constructed by using the AutoCAD R13 and ARC/INFO 3.4D. Four different spatial interpolation and expolation techniques such as IDW (inverse distance weighted averaging), TIN (triangulated irregular network), polynomial regression, and kriging technique were examined to compare spatial distribution patterns. Each pattern obtained by each technique was substantally different as varing pollutant types, land of use types, and topological conditions, etc. Thus, our study focused intensively on uncertainty analysis based on a concept of the jackknife and the sum of error distance. It was found that a kriging technique was the best applicalbe in this study area.

  • PDF

Comparison of Spatial Distributions of Rainfall Derived from Rain Gages and a Radar (우량계와 강우레이다에 의해 관측된 강우량의 공간 분포 비교)

  • Kim, Byung-Sik;Kim, Hung-Soo;Yang, Dong-Min
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • Rainfall is one of the most important input data of hydrologic models. Rain gage is used to estimate areal rainfall for hydrologic models using several interpolation method such as Thiessen polygon, Inverse Distance Squared(IDS) and Kriging. However, it is still difficult to derive actual spatial distribution of the rainfall using the aforementioned approaches. On the other hand, radar can offer a significant analytic improvement for rainfall analysis by providing directly more representative of the true spatial distribution of rainfall. In this study, In this study, spatial distributions of rainfall derived form rain gages using IDS and Kriging and rainfall from radar are compared. As results, it is found that using radar can provide actual spatial distribution than rain gages.