• 제목/요약/키워드: Spatial Image

검색결과 3,282건 처리시간 0.033초

Applicability of Geo-spatial Processing Open Sources to Geographic Object-based Image Analysis (GEOBIA)

  • Lee, Ki-Won;Kang, Sang-Goo
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.379-388
    • /
    • 2011
  • At present, GEOBIA (Geographic Object-based Image Analysis), heir of OBIA (Object-based Image Analysis), is regarded as an important methodology by object-oriented paradigm for remote sensing, dealing with geo-objects related to image segmentation and classification in the different view point of pixel-based processing. This also helps to directly link to GIS applications. Thus, GEOBIA software is on the booming. The main theme of this study is to look into the applicability of geo-spatial processing open source to GEOBIA. However, there is no few fully featured open source for GEOBIA which needs complicated schemes and algorithms, till It was carried out to implement a preliminary system for GEOBIA running an integrated and user-oriented environment. This work was performed by using various open sources such as OTB or PostgreSQL/PostGIS. Some points are different from the widely-used proprietary GEOBIA software. In this system, geo-objects are not file-based ones, but tightly linked with GIS layers in spatial database management system. The mean shift algorithm with parameters associated with spatial similarities or homogeneities is used for image segmentation. For classification process in this work, tree-based model of hierarchical network composing parent and child nodes is implemented by attribute join in the semi-automatic mode, unlike traditional image-based classification. Of course, this integrated GEOBIA system is on the progressing stage, and further works are necessary. It is expected that this approach helps to develop and to extend new applications such as urban mapping or change detection linked to GIS data sets using GEOBIA.

Feasibility of Using an Automatic Lens Distortion Correction (ALDC) Camera in a Photogrammetric UAV System

  • Jeong, Hohyun;Ahn, Hoyong;Park, Jinwoo;Kim, Hyungwoo;Kim, Sangseok;Lee, Yangwon;Choi, Chuluong
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.475-483
    • /
    • 2015
  • This study examined the feasibility of using an automatic lens distortion correction (ALDC) camera as the payload for a photogrammetric unmanned aerial vehicle (UAV) system. First, lens distortion for the interior orientation (IO) parameters was estimated. Although previous studies have largely ignored decentering distortion, this study revealed that more than 50% of the distortion of the ALDC camera was caused by decentering distortion. Second, we compared the accuracy of bundle adjustment for camera calibration using three image types: raw imagery without the ALDC option; imagery corrected using lens profiles; and imagery with the ALDC option. The results of image triangulation, the digital terrain model (DTM), and the orthoimage using the IO parameters for the ALDC camera were similar to or slightly better than the results using self-calibration. These results confirm that the ALDC camera can be used in a photogrammetric UAV system using only self-calibration.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

공간적 암호화를 사용하는 영상 워터마킹 기법 (Image Watermarking Algorithm using Spatial Encryption)

  • 정수목
    • 문화기술의 융합
    • /
    • 제6권1호
    • /
    • pp.485-488
    • /
    • 2020
  • 본 논문에서는 공간적 암호화를 사용하여 영상에 소유권 정보인 워터마크를 영상 픽셀의 LSB에 안전하게 은닉하는 기법을 제안하였다. 제안된 워터마킹 기법은 영상의 지적재산권 보호에 효과적으로 사용될 수 있다. 제안된 기법을 사용하여 공간적으로 암호화된 워터마크를 은닉한 영상인 스테고 이미지로부터 워터마크를 손실 없이 추출할 수 있다. 실험을 통하여 제안 기법의 우수성을 확인하였다. 제안된 기법을 적용하여 워터마킹을 수행한 결과 영상인 스테고 이미지의 화질은 51dB이상으로 사람이 육안으로 워터마크의 존재여부를 인식할 수 없으며, 워터마크가 공간적으로 암호화되어 있기 때문에 워터마크의 보안성이 우수하다.

An advanced reversible data hiding algorithm based on the similarity between neighboring pixels

  • Jung, Soo-Mok
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.33-42
    • /
    • 2016
  • In this paper, an advanced reversible data hiding algorithm which takes the advantage of the spatial locality in image was proposed. Natural image has a spatial locality. The pixel value of a natural image is similar to the values of neighboring pixels. So, using the neighboring pixel values, it is possible to precisely predict the pixel value. Frequency increases significantly at the peak point of the difference histogram using the predicted values. Therefore, it is possible to increase the amount of data to be embedded. By using the proposed algorithm, visually high quality stego-image can be generated, the original cover image and the embedded data can be extracted from the stego-image without distortion. The embedding data into the cover image of the proposed algorithm is much lager than that of the previous algorithm. The performance of the proposed algorithm was verified by experiment. The proposed algorithm is very useful for the reversible data hiding.

Scene-based Nonuniformity Correction by Deep Neural Network with Image Roughness-like and Spatial Noise Cost Functions

  • Hong, Yong-hee;Song, Nam-Hun;Kim, Dae-Hyeon;Jun, Chan-Won;Jhee, Ho-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.11-19
    • /
    • 2019
  • In this paper, a new Scene-based Nonuniformity Correction (SBNUC) method is proposed by applying Image Roughness-like and Spatial Noise cost functions on deep neural network structure. The classic approaches for nonuniformity correction require generally plenty of sequential image data sets to acquire accurate image correction offset coefficients. The proposed method, however, is able to estimate offset from only a couple of images powered by the characteristic of deep neural network scheme. The real world SWIR image set is applied to verify the performance of proposed method and the result shows that image quality improvement of PSNR 70.3dB (maximum) is achieved. This is about 8.0dB more than the improved IRLMS algorithm which preliminarily requires precise image registration process on consecutive image frames.

Deformable Registration for MRI Medical Image

  • Li, Binglu;Kim, YoungSeop;Lee, Yong-Hwan
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.63-66
    • /
    • 2019
  • Due to the development of medical imaging technology, different imaging technologies provide a large amount of effective information. However, different imaging method caused the limitations of information integrity by using single type of image. Combining different image together so that doctor can obtain the information from medical image comprehensively. Image registration algorithm based on mutual information has become one of the hotspots in the field of image registration with its high registration accuracy and wide applicability. Because the information theory-based registration technology is not dependent on the gray value difference of the image, and it is very suitable for multimodal medical image registration. However, the method based on mutual information has a robustness problem. The essential reason is that the mutual information itself is not have enough information between the pixel pairs, so that the mutual information is unstable during the registration process. A large number of local extreme values are generated, which finally cause mismatch. In order to overcome the shortages of mutual information registration method, this paper proposes a registration method combined with image spatial structure information and mutual information.

Deep Reference-based Dynamic Scene Deblurring

  • Cunzhe Liu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.653-669
    • /
    • 2024
  • Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.

A STUDY ON THE DETERMINATION OF THE INSTANTANEOUS FIELD OF VIEW FOR I-M HIGH RESOLUTION SATELLITE IMAGE

  • Seo Doo-Chun;Park Su-Young;Lee Dong-Han;Lee Sun-Gu;Song Jeong Heon;Lim Hyo-Suk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.649-652
    • /
    • 2005
  • In this paper we present a detail approach of the determination of IFOV (Instantaneous Field of View) of high-resolution (l m) panchromatic satellite image over test site. IFOV is the representative measurements as the determination of the spatial resolution in remote sensed imaging system. It can be defined as some area on the ground with the particular altitude when the satellite acquires the image at any given time. Especially, spatial resolution of passive sensors primarily depends on their IFOV. The determination of IFOV goes through simple steps of procedure as followings: Firstly, the GSD (Ground Sample Distance) should be computed at each point on the geometrically corrected image. Then, The GSD is converted into the IFOV. So we are going to explain our test procedures and results.

  • PDF

공간합성된 초음파 의료영상에서 FIR 필터를 이용한 심라인 감소방법 (Reduction of Seam Line Using an FIR Filter in Spatially Compounded Ultrasonic Diagnostic Images)

  • 최명환
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.129-133
    • /
    • 2008
  • A method to reduce seam line artifact in spatial compounding of ultrasonic images is presented. Spatial compounding is a speckle reducing imaging technique in which a number of ultrasound images of a given target that have been obtained from multiple view angles are combined into a single compounded image by combining the data received from each data point in the compounded image. Since different view angle results in different view area, and the images of different view arms are combined into an image, the compounded image consists of regions with different signal to noise ratio, and the boundary lines between these regions are visible as seam lines in the compounded images. In this paper, we present an algorithm that reduces the visibility of this seam line in the spatially compounded images. Design procedure for a FIH filter is described and the results of applying the filter to in-vivo ultrasonic images are analyzed.

  • PDF