Objectives: This study aims at decreasing spatial dose rate through work improvement whilst spatial dose rate is the cause of increasing personal exposure dose which occurs in the process of handling radioisotope. Methods: From February 2013 until July 2013, divided into "before" and "after" the improvement, spatial dose rate in laboratory of nuclear medicine was measured in gamma image room, PET/CT-1 image room, and PET/CT-2 image room as its locations. The measurement time was 08:00, 12:00 and 17:00, and SPSS 21.0 USA was opted for its statistical analysis. Result: The spatial dose rate at distribution worktable, injection table, the entrance to the distribution room, and radioisotope storage box, which had showed high spatial dose rate, decreased by more than 43.7% a monthly average. The distribution worktable, that had showed the highest spatial dose rate in PET/CT-1 image room, dropped the rate to 42.3% as of July. The injection table and distribution worktable in the PET/CT-2 image room also showed the decline of spatial dose rate to 89% and 64.4%, respectively. Conclusion: By improving distribution process and introducing proper radiation shielding material, we were able to drop the spatial dose rate substantially at distribution worktable, injection table, and nuclide storage box. However, taking into account of steadily increasing amount of radioisotope used, strengthening radiation related regulations, and safe utilization of radioisotope, the process of system improvement needs to be maintained through continuous monitoring.
Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.
When using a mobile X-ray unit, primary radiation creates medical images and secondary radiation scatters in many directions, which reduces image quality and causes exposure to patients, care givers and medical personnel. The purpose of this study was to develop a radiation shielding system for effectively shielding secondary radiation and evaluate its effectiveness. Using a mobile X-ray unit, spatial dose according to presence of human equivalent phantom and spatial dose using the developed shielding device were measured, and the phantom at 80 cm equidistance from center of X-ray was compared with spatial dose according to use of a shield. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from the head direction($-90^{\circ}$) to the body direction($+90^{\circ}$). In the spatial dose measurement with and without the phantom, when the human equivalent Phantom was used, the spatial dose was increased by 40% in all directions from 40 cm to 100 cm from the central X-ray, and about 88% of the space dose was reduced when using the developed shields with the phantom. The equidistance dose at 80 cm from the central X-ray was increased by 39% from $5.1{\pm}0.26{\mu}Gy$ to $7.1{\pm}0.15{\mu}Gy$ when the human equivalent phantom was used, and when phantom was used and shielding was used, the spatial dose was reduced by about 90% from $7.1{\pm}0.15{\mu}Gy$ to $0.7{\pm}0.07{\mu}Gy$. The spatial dose of natural radiation was measured to be about $0.2{\pm}0.04{\mu}Gy$ when using the developed shielding with Phantom at a distance of 1 m or more. It is expected that by using the developed shielding system, it will be possible to effectively reduce secondary radiation dose received in all directions and to ensure safe imaging.
두경부 질환의 인터벤션 시술 시 시술자가 받는 피폭선량의 평가 및 감소연구를 위한 선행 연구로써, 이온 전리함을 이용하여 인터벤션 시술 시 시술자의 위치하는 공간선량 분포를 측정하였다. Bi-plane 인터벤션 시술 장비를 대상으로 4개 구역(45, 135, 225 그리고 315도)으로 나누어 가상의 시술자가 있다는 가정아래에 시술자의 결정장기위치에서 거리(80, 100, 120, 그리고 140 cm)에 따라 조사선량을 측정하였으며, 방사선발생장치의 위치를 변화시켜 선량변화를 분석하였다. 시술자의 대부분이 위치하는 225도의 구역의 조사선량은 가장 가까운 거리인 80 cm에서 시술자 눈의 높이에서 114.5 mR/h, 가슴의 높이는 143.1 mR/h, 그리고 생식기위치는 147 mR/h이었다. 그리고 방사선 발생장치의 위치를 시술자 가까이로 변화시켰을 경우, 평균적으로 $18.1{\pm}10.5%$의 선량이 증가하였다. 본 연구에서 인터벤션 시술 동안 시술자가 위치할 수 있는 곳의 공간선량분포를 확인하였으며, 본 연구 결과를 통하여 시술자의 방사선 방어에 대하여 구체적인 계획을 수립할 수 있을 것이라 사료된다.
This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.
고용량 옥소 치료 시 수평면, 수직면, 방위각에 따라 3차원적으로 방출되는 공간선량률을 측정하였다. 정확한 측정을 위해 기하학적 구조의 알루미늄 틀을 제작하여 100 cm 거리에서, 높이 (5 측정점), 방위각 (8 측정점), 시간적 간격 (6 측정점)을 각각 나누어서 분석하였다. 수직면상 공간선량률 분포는 $^{131}I$을 경구 투여 24 시간 후 환자로부터 거리 100 cm, 높이 100 cm 지점에서 환자군 평균 71.85 ${\mu}Sv/h$로 가장 높았다. 수분섭취를 통한 공간선량률 감쇠 정도를 두 그룹으로 나누어 실험하였다. $^{131}I$을 경구 투여 24시간 뒤 거리 100 cm, 높이 100 cm에서 공간선량률 분포가 A 실험군은 44.9 ${\mu}Sv/h$이고 B 실험군은 100.28 ${\mu}Sv/h$이다. A 실험군이 B 실험군과 비교하여 고용량 옥소 치료 시 수분섭취 정도에 따라 약 53 %의 피폭경감 효과를 확인하였다.
방사선 구역 내부의 공간선량은 의학의 발전과 더불어 방호시설이 잘 되어 있어도 작업종사자의 피폭을 증가시킬 우려가 있다. 핵의학과 내의 분배실은 항상 공간선량이 존재하므로 작업종사자의 피폭선량을 예측하기 위하여 분배실 내부의 공간선량을 측정, 분석 하였다. 핵의학과 $^{18}F$ 분배실의 공간선량률 측정결과 최대 $6.78{\pm}0.083{\mu}Sv/h$, $^{99m}Tc$, $^{131}I$ 분배실의 공간선량률이 최대 $9.248{\pm}0.013{\mu}Sv/h$로 나타났다. 또한, $^{18}F$ 분배실의 경우 1m 거리에서 간호사가 IV시 연간 외부피폭선량은 $42.5{\mu}Sv$로 나타났다. 분배실의 분배창을 기준으로 오른쪽 사방향에서 공간선량률이 높게 나타났다. 따라서 방사성의약품을 분배실에서 분배할 경우 방사선 작업종사자의 머무르는 시간을 짧게 해야 하며, 분배창의 오른쪽 사방향의 경우 피폭을 줄이기 위한 분배창의 설계가 필요하며, IV시 작업종사자의 개인피폭선량을 줄이기 위한 최선의 노력이 필요하다고 사료된다.
Radioactive medicines are used a lot owing to the increase of a PET-CT examination using glucose metabolism useful for the early diagnosis of diseases. Therefore, the spatial dose that is generated from patients and their surroundings causes the patients' guardians and health professional to be exposed to radiation. However, they get unnecessarily exposed to radiation because medical institutions lack in space for isolation and recognition of the examination. This research intended to examine the spatial dose rates by measuring the dose emitted from the patient for 48 hours to whom F-18 FDG was administered. The spatial dose rates that were measured 100cm away from the patient's body after F-18 FDG was injected were $65.88{\mu}$Sv/hr at 60-minute point, $45.13{\mu}$Sv/hr at 90-minute point, $9.88{\mu}$Sv/hr at 6-hour point, and $1.24{\mu}$Sv/hr at 12-hour point. When the dose that the guardian and health professional got was converted into the annual(240-day working) accumulative dose, it was examined that the guardian received 81.56 mSv/yr and health professional received 49.36mSv/yr. In addition, the result has revealed that the dose that the patient received from one time of PET-CT examination was 3.75mSv/yr, which is 1.5 times more when compared with the annual natural radiation exposure dose.
In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at 5 cm, 50 cm, and 100 cm from skin surface of patients using an proportional digital surveymeter, both 5 min after injection and right before the studies. In results, the exposure to the technologists in each procedure was small, compared nth the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.
치과병의원에서 사용하고 있는 이동형 치과 X선 발생장치를 이용하여 두경부 마네킹에 X선을 조사할 때 주변의 공간선량을 측정하고, 동일한 방법으로 고정형 X선 발생장치에 적용하여 측정된 공간선량을 상호 비교하며, 더불어 기기 및 위치별 공간선량을 비교 분석한 결과는 다음과 같다. 이동형 X선 발생장치의 평균 공간선량은 $37.51{\mu}Sv$로 고정형 X선 발생장치의 $10.77{\mu}Sv$보다 매우 높았다(p<0.001). 이동형 X선 발생장치의 기기별 공간선량은 $17.77{\mu}Sv$부터 $68.90{\mu}Sv$까지 큰 차이를 나타냈다(p<0.05). 위치별로는 직전 위치가 $54.14{\mu}Sv$로 가장 높았고, 직우 위치가 $13.60{\mu}Sv$로 가장 낮았으며, 직좌와 직후 위치는 $42.12{\mu}Sv$, $40.18{\mu}Sv$로 유사하였다(p<0.01). 이상의 결과를 통해 이동용 치과 X선 발생장치는 이동 불가능한 환자만을 대상으로 제한적으로 시행하여야 하며, 반드시 환자와 술자 모두 납 방어복을 착용하여 방사선 피폭을 최소화해야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.