• 제목/요약/키워드: Spatial Dose

검색결과 159건 처리시간 0.024초

시스템 개선을 통한 핵의학 검사실의 공간 선량률 감소방안 (Solution to Decrease Spatial Dose Rate in Laboratory of Nuclear Medicine through System Improvement)

  • 문재승;신민용;안성철;유문곤;김수근
    • 한국의료질향상학회지
    • /
    • 제20권1호
    • /
    • pp.60-73
    • /
    • 2014
  • Objectives: This study aims at decreasing spatial dose rate through work improvement whilst spatial dose rate is the cause of increasing personal exposure dose which occurs in the process of handling radioisotope. Methods: From February 2013 until July 2013, divided into "before" and "after" the improvement, spatial dose rate in laboratory of nuclear medicine was measured in gamma image room, PET/CT-1 image room, and PET/CT-2 image room as its locations. The measurement time was 08:00, 12:00 and 17:00, and SPSS 21.0 USA was opted for its statistical analysis. Result: The spatial dose rate at distribution worktable, injection table, the entrance to the distribution room, and radioisotope storage box, which had showed high spatial dose rate, decreased by more than 43.7% a monthly average. The distribution worktable, that had showed the highest spatial dose rate in PET/CT-1 image room, dropped the rate to 42.3% as of July. The injection table and distribution worktable in the PET/CT-2 image room also showed the decline of spatial dose rate to 89% and 64.4%, respectively. Conclusion: By improving distribution process and introducing proper radiation shielding material, we were able to drop the spatial dose rate substantially at distribution worktable, injection table, and nuclide storage box. However, taking into account of steadily increasing amount of radioisotope used, strengthening radiation related regulations, and safe utilization of radioisotope, the process of system improvement needs to be maintained through continuous monitoring.

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • 제43권3호
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

이동형 방사선 차폐장치의 성능평가에 관한 연구 (A Study on the Performance Evaluation of Portable Radiation Shielding Apparatus)

  • 구본열;한상현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권4호
    • /
    • pp.289-295
    • /
    • 2018
  • When using a mobile X-ray unit, primary radiation creates medical images and secondary radiation scatters in many directions, which reduces image quality and causes exposure to patients, care givers and medical personnel. The purpose of this study was to develop a radiation shielding system for effectively shielding secondary radiation and evaluate its effectiveness. Using a mobile X-ray unit, spatial dose according to presence of human equivalent phantom and spatial dose using the developed shielding device were measured, and the phantom at 80 cm equidistance from center of X-ray was compared with spatial dose according to use of a shield. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from the head direction($-90^{\circ}$) to the body direction($+90^{\circ}$). In the spatial dose measurement with and without the phantom, when the human equivalent Phantom was used, the spatial dose was increased by 40% in all directions from 40 cm to 100 cm from the central X-ray, and about 88% of the space dose was reduced when using the developed shields with the phantom. The equidistance dose at 80 cm from the central X-ray was increased by 39% from $5.1{\pm}0.26{\mu}Gy$ to $7.1{\pm}0.15{\mu}Gy$ when the human equivalent phantom was used, and when phantom was used and shielding was used, the spatial dose was reduced by about 90% from $7.1{\pm}0.15{\mu}Gy$ to $0.7{\pm}0.07{\mu}Gy$. The spatial dose of natural radiation was measured to be about $0.2{\pm}0.04{\mu}Gy$ when using the developed shielding with Phantom at a distance of 1 m or more. It is expected that by using the developed shielding system, it will be possible to effectively reduce secondary radiation dose received in all directions and to ensure safe imaging.

두경부 질환의 인터벤션 시술 시 시술자의 피폭선량평가를 위한 공간선량측정에 관한 연구 (Measurement of Spatial Dose Distribution for evaluation operator dose during Neuro-interventional Procedures)

  • 한수철;홍동희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권3호
    • /
    • pp.323-328
    • /
    • 2016
  • 두경부 질환의 인터벤션 시술 시 시술자가 받는 피폭선량의 평가 및 감소연구를 위한 선행 연구로써, 이온 전리함을 이용하여 인터벤션 시술 시 시술자의 위치하는 공간선량 분포를 측정하였다. Bi-plane 인터벤션 시술 장비를 대상으로 4개 구역(45, 135, 225 그리고 315도)으로 나누어 가상의 시술자가 있다는 가정아래에 시술자의 결정장기위치에서 거리(80, 100, 120, 그리고 140 cm)에 따라 조사선량을 측정하였으며, 방사선발생장치의 위치를 변화시켜 선량변화를 분석하였다. 시술자의 대부분이 위치하는 225도의 구역의 조사선량은 가장 가까운 거리인 80 cm에서 시술자 눈의 높이에서 114.5 mR/h, 가슴의 높이는 143.1 mR/h, 그리고 생식기위치는 147 mR/h이었다. 그리고 방사선 발생장치의 위치를 시술자 가까이로 변화시켰을 경우, 평균적으로 $18.1{\pm}10.5%$의 선량이 증가하였다. 본 연구에서 인터벤션 시술 동안 시술자가 위치할 수 있는 곳의 공간선량분포를 확인하였으며, 본 연구 결과를 통하여 시술자의 방사선 방어에 대하여 구체적인 계획을 수립할 수 있을 것이라 사료된다.

방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가 (Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area)

  • 서정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권6호
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

고용량 옥소 치료 시 3차원적 공간선량률 측정 및 연구 (The Study and Measurement of Three Dimensional Spatial Dose Rate from Radioiodine Therapy)

  • 장보석
    • 한국방사선학회논문지
    • /
    • 제7권3호
    • /
    • pp.251-257
    • /
    • 2013
  • 고용량 옥소 치료 시 수평면, 수직면, 방위각에 따라 3차원적으로 방출되는 공간선량률을 측정하였다. 정확한 측정을 위해 기하학적 구조의 알루미늄 틀을 제작하여 100 cm 거리에서, 높이 (5 측정점), 방위각 (8 측정점), 시간적 간격 (6 측정점)을 각각 나누어서 분석하였다. 수직면상 공간선량률 분포는 $^{131}I$을 경구 투여 24 시간 후 환자로부터 거리 100 cm, 높이 100 cm 지점에서 환자군 평균 71.85 ${\mu}Sv/h$로 가장 높았다. 수분섭취를 통한 공간선량률 감쇠 정도를 두 그룹으로 나누어 실험하였다. $^{131}I$을 경구 투여 24시간 뒤 거리 100 cm, 높이 100 cm에서 공간선량률 분포가 A 실험군은 44.9 ${\mu}Sv/h$이고 B 실험군은 100.28 ${\mu}Sv/h$이다. A 실험군이 B 실험군과 비교하여 고용량 옥소 치료 시 수분섭취 정도에 따라 약 53 %의 피폭경감 효과를 확인하였다.

핵의학과 분배실 내의 공간선량률 측정 (Measurement of the Spatial Dose Rate for Distribution Room in Department of Nuclear Medicine)

  • 박정규;조의현
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.151-157
    • /
    • 2012
  • 방사선 구역 내부의 공간선량은 의학의 발전과 더불어 방호시설이 잘 되어 있어도 작업종사자의 피폭을 증가시킬 우려가 있다. 핵의학과 내의 분배실은 항상 공간선량이 존재하므로 작업종사자의 피폭선량을 예측하기 위하여 분배실 내부의 공간선량을 측정, 분석 하였다. 핵의학과 $^{18}F$ 분배실의 공간선량률 측정결과 최대 $6.78{\pm}0.083{\mu}Sv/h$, $^{99m}Tc$, $^{131}I$ 분배실의 공간선량률이 최대 $9.248{\pm}0.013{\mu}Sv/h$로 나타났다. 또한, $^{18}F$ 분배실의 경우 1m 거리에서 간호사가 IV시 연간 외부피폭선량은 $42.5{\mu}Sv$로 나타났다. 분배실의 분배창을 기준으로 오른쪽 사방향에서 공간선량률이 높게 나타났다. 따라서 방사성의약품을 분배실에서 분배할 경우 방사선 작업종사자의 머무르는 시간을 짧게 해야 하며, 분배창의 오른쪽 사방향의 경우 피폭을 줄이기 위한 분배창의 설계가 필요하며, IV시 작업종사자의 개인피폭선량을 줄이기 위한 최선의 노력이 필요하다고 사료된다.

F-18 FDG를 이용한 핵의학 검사에서 주변 선량의 안전성 평가 (The Safety Assessment of Surrounding Dose on Nuclear Medicine Test by Use The F-18 FDG)

  • 곽병준;지태정;민병인
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.157-162
    • /
    • 2009
  • Radioactive medicines are used a lot owing to the increase of a PET-CT examination using glucose metabolism useful for the early diagnosis of diseases. Therefore, the spatial dose that is generated from patients and their surroundings causes the patients' guardians and health professional to be exposed to radiation. However, they get unnecessarily exposed to radiation because medical institutions lack in space for isolation and recognition of the examination. This research intended to examine the spatial dose rates by measuring the dose emitted from the patient for 48 hours to whom F-18 FDG was administered. The spatial dose rates that were measured 100cm away from the patient's body after F-18 FDG was injected were $65.88{\mu}$Sv/hr at 60-minute point, $45.13{\mu}$Sv/hr at 90-minute point, $9.88{\mu}$Sv/hr at 6-hour point, and $1.24{\mu}$Sv/hr at 12-hour point. When the dose that the guardian and health professional got was converted into the annual(240-day working) accumulative dose, it was examined that the guardian received 81.56 mSv/yr and health professional received 49.36mSv/yr. In addition, the result has revealed that the dose that the patient received from one time of PET-CT examination was 3.75mSv/yr, which is 1.5 times more when compared with the annual natural radiation exposure dose.

핵의학 검사에서 환자로부터의 공간선량률 측정 (Measurement of the Spatial Dose Rates from Radioactive Patients during Nuclear Medicine Studies)

  • 박명환;이준일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제25권1호
    • /
    • pp.73-76
    • /
    • 2002
  • In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at 5 cm, 50 cm, and 100 cm from skin surface of patients using an proportional digital surveymeter, both 5 min after injection and right before the studies. In results, the exposure to the technologists in each procedure was small, compared nth the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.

  • PDF

이동형 치과 X선 발생장치의 공간선량 분포 (Spatial Dose Distribution from Portable Hand-Held Dental X-Ray Equipment)

  • 한경순;안성민
    • 치위생과학회지
    • /
    • 제15권3호
    • /
    • pp.254-258
    • /
    • 2015
  • 치과병의원에서 사용하고 있는 이동형 치과 X선 발생장치를 이용하여 두경부 마네킹에 X선을 조사할 때 주변의 공간선량을 측정하고, 동일한 방법으로 고정형 X선 발생장치에 적용하여 측정된 공간선량을 상호 비교하며, 더불어 기기 및 위치별 공간선량을 비교 분석한 결과는 다음과 같다. 이동형 X선 발생장치의 평균 공간선량은 $37.51{\mu}Sv$로 고정형 X선 발생장치의 $10.77{\mu}Sv$보다 매우 높았다(p<0.001). 이동형 X선 발생장치의 기기별 공간선량은 $17.77{\mu}Sv$부터 $68.90{\mu}Sv$까지 큰 차이를 나타냈다(p<0.05). 위치별로는 직전 위치가 $54.14{\mu}Sv$로 가장 높았고, 직우 위치가 $13.60{\mu}Sv$로 가장 낮았으며, 직좌와 직후 위치는 $42.12{\mu}Sv$, $40.18{\mu}Sv$로 유사하였다(p<0.01). 이상의 결과를 통해 이동용 치과 X선 발생장치는 이동 불가능한 환자만을 대상으로 제한적으로 시행하여야 하며, 반드시 환자와 술자 모두 납 방어복을 착용하여 방사선 피폭을 최소화해야 할 것이다.