• 제목/요약/키워드: Spatial Decision Tree

검색결과 45건 처리시간 0.023초

Evaluation of Suitable REDD+ Sites Based on Multiple-Criteria Decision Analysis (MCDA): A Case Study of Myanmar

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • 제34권6호
    • /
    • pp.461-471
    • /
    • 2018
  • In this study, the deforestation and forest degradation areas have been obtained in Myanmar using a land cover lamp (LCM) and a tree cover map (TCM) to get the $CO_2$ potential reduction and the strength of occurrence was evaluated by using the geostatistical technique. By applying a multiple criteria decision-making method to the regions having high strength of occurrence for the $CO_2$ potential reduction for the deforestation and forest degradation areas, the priority was selected for candidate lands for REDD+ project. The areas of deforestation and forest degradation were 609,690ha and 43,515ha each from 2010 to 2015. By township, Mong Kung had the highest among the area of deforestation with 3,069ha while Thlangtlang had the highest in the area of forest degradation with 9,213 ha. The number of $CO_2$ potential reduction hotspot areas among the deforestation areas was 15, taking up the $CO_2$ potential reduction of 192,000 ton in average, which is 6 times higher than that of all target areas. Especially, the township of Hsipaw inside the Shan region had a $CO_2$ potential reduction of about 772,000 tons, the largest reduction potential among the hotpot areas. There were many $CO_2$ potential reduction hot spot areas among the forest degradation area in the eastern part of the target region and has the $CO_2$ potential reduction of 1,164,000 tons, which was 27 times higher than that of the total area. AHP importance analysis showed that the topographic characteristic was 0.41 (0.40 for height from surface, 0.29 for the slope and 0.31 for the distance from water area) while the geographical characteristic was 0.59 (0.56 for the distance from road, 0.56 for the distance from settlement area and 0.19 for the distance from Capital). Yawunghwe, Kalaw, and Hsi Hseng were selected as the preferred locations for the REDD+ candidate region for the deforestation area while Einme, Tiddim, and Falam were selected as the preferred locations for the forest degradation area.

항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류 (Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning)

  • 손보경;이연수;임정호
    • 한국지리정보학회지
    • /
    • 제24권3호
    • /
    • pp.83-98
    • /
    • 2021
  • 도시녹지는 도시 생태계 건강성 증진을 위한 중요한 요소이며, 건강한 도시 생태계 유지 및 관리를 위해서는 도시녹지의 공간적인 현황 파악이 필요하다. 환경부에서는 2010년 이후부터 총 41개의 분류 항목을 갖는 1m 급 해상도의 세분류 토지피복지도를 제공해오고 있으나, 가로수와 같은 도시 내 고해상도 상세 녹지 정보는 기타 초지로 분류되거나 누락되어 오고 있다. 따라서, 본 연구에서는 수원시 지역을 대상으로 1m 이하 급의 고해상도 원격탐사 자료(항공 LiDAR 및 RGB 정사영상)를 이용하여, 기존 세분류 토지피복지도에서는 나타나지 않는 고해상도의 상세 도시 녹지(수목, 관목 및 초지) 정보를 분류하고자 하였다. 분류 기법으로는 딥러닝 기반의 이미지 분할방법인 U-Net 구조의 모델을 활용하였으며, 분류 항목의 수 및 사용하는 자료의 종류에 따라 총 3가지의 모델(LRGB10, LRGB5, 및 RGB5)을 제안하고 성능을 평가하였다. 검증 지역에 대한 세 모델의 평균 전체 정확도는 각 83.40%(LRGB10), 89.44%(LRGB5), 74.76%(RGB5)이며, 항공 LiDAR와 RGB 정사영상을 함께 사용하여 총 5개의 항목(수목, 관목, 초지, 건물, 및 그 외)을 분류하는 LRGB5 모델의 성능이 가장 높게 나타났다. 수원시의 수목, 관목 및 초지 기준의 전체 녹지 현황은 각 45.61%(LRGB10), 43.47%(LRGB5), 및 44.22%(RGB5)로 나타났으며, 세 모델 모두 기존 세분류 토지피복지도와 비교하여 평균 13.40%의 도시 수목 정보를 더 제공할 수 있는 것으로 나타났다. 더불어 이러한 도시녹지 분류 결과는 향후 중분류 토지피복지도와 같은 기존 GIS 정보와의 융합을 통해 가로수 녹지 비율 현황 등 추가적인 상세 녹지 현황 정보를 제공할 수 있어, 다양한 도시녹지 연구 및 정책의 기초 자료로 활용될 수 있을 것으로 기대된다.

의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석 (Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization)

  • 강영옥;손세린;조나혜
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.233-254
    • /
    • 2017
  • 본 연구는 교통사고 가운데 인적피해를 동반한 교통사고에 대해 교통사고의 시공간적 특성과 교통사고 심각도에 영향을 미치는 주요인을 분석하고자 하였다. 이를 위해 2012년부터 2015년 까지 4년간 서울시에서 발생한 교통사고 데이터 가운데 인적사고가 있는 데이터를 교통사고 심각도에 따라 경상, 중상, 사망 교통사고로 분류하고, 교통사고의 시공간특성분석은 커널분석, 핫스팟분석, 스페이스타임큐브분석, EHSA(Emerging HotSpot Analysis)를 수행하였으며, 교통사고 심각도에 영향을 미치는 요인 분석은 데이터마이닝 기법중의 하나인 의사결정나무 모형을 활용하였다. 분석결과 서울시 교통사고는 도심부 보다는 외곽지역에서 많이 발생하며 특히 한강 이남의 상업 활동이 많은 곳에서 교통사고가 많음을 확인할 수 있었다. 특히 서초와 강남의 일부 상업 및 유흥지역을 중심으로 교통사고 집중지역이 나타나며 교통사고 다발지역은 시간이 흐름에 따라 그 현상이 더욱 심화되는 경향을 보이고 있었다. 사망교통사고의 경우 지역적으로는 영등포구, 구로구, 종로구, 중구, 성북구 일부지역에 통계적으로 유의미한 핫스팟지역이 나타나지만 시간대별로 구분해보면 오후 퇴근시간 부터 새벽까지 일부 구간에서 핫스팟이 나타나며 시간 고려 없이 분석된 결과와는 상이한 패턴이 나타남을 알 수 있었다. 서울시 교통사고 심각도에 영향을 미치는 주요 요인으로는 사고유형이 가장 중요한 역할을 하며 도로의 종류, 차량의 종류, 교통사고 발생 시간, 법규위반 종류 등의 순으로 중요도가 나타났다. 교통사고 가운데 심각한 교통사고로 이어지는 경우는 차대 사람이나 차량단독으로 사고가 나는 경우 고속도로나 특별광역시도와 같이 폭원이 넓고 차량속도가 높은 곳에서 승합차나 화물차에서 중상의 교통사고가 일어날 가능성이 높으며, 동일한 상황에서 승합차나 화물차가 아닌 승용차, 자전거, 이륜차 등의 경우에는 새벽시간에 심각한 교통사고로 이어질 가능성이 높은 것으로 나타났다.

GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발 (Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data)

  • 유하영;서명석
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1779-1790
    • /
    • 2023
  • 위성 자료의 성능이 크게 개선됨에 따라 최근에는 위성을 이용하여 광범위한 영역에 대한 실시간 안개 탐지 알고리즘들이 개발되고 있다. 한반도 주변을 관측하는 기상위성 중 관측주기가 10분으로 시간해상도가 가장 우수한 GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI)는 공간해상도가 500 m이다. 반면 GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II)는 해상도가 250 m지만, 1시간 주기로 관측하고 가시채널만 보유하고 있다. 따라서 본 연구에서는 한반도 주변에서 발생하는 안개를 10분 및 250 m 해상도로 탐지하기 위해 GK2AB 융합 안개 탐지 알고리즘(Fog Detection Algorithm, FDA)인 GK2AB FDA를 개발하였다. GK2AB FDA는 세 파트로 구성된다. 첫 번째로 현업 운용중인 GK2A 안개 탐지 알고리즘(GK2A FDA)으로 10분 및 500 m 해상도로 안개를 탐지한다. 두 번째 단계에서는 두 위성 자료 간 시공간 일치, 태양천정각과 파장역 차이를 보정한 GK2A normalized visible (NVIS)의 10분 변화량을 이용하여 GK2B NVIS를 10분 간격으로 외삽한다. 마지막 단계에서는 외삽된 GK2B NVIS, 태양천정각, GK2A FDA 산출물 등을 입력자료로 기계학습(의사결정나무)을 이용하여 개발된 GK2AB FDA로 지리적위치에 따라 안개를 탐지(250 m, 10분)한다. GK2AB FDA의 훈련에는 6개 사례, 검증에는 4개 사례가 이용되었다. GK2AB FDA의 정량적 검증에는 지상관측 시정, 풍속 그리고 상대습도 자료를 이용하였다. GK2AB FDA는 GK2A FDA에 비해 공간해상도가 4배 증가함에 따라 안개 및 비안개 화소가 보다 자세히 구분되었다. 또한 검증방법에 관계없이 GK2A FDA에 비해 probability of detection (POD)은 높고 Hanssen-Kuiper Skill score (KSS)는 높거나 비슷함을 보여 안개 탐지 수준이 개선된 것으로 보인다. 하지만 일부 사례에서는 GK2AB FDA의 false alarm ratio (FAR)와 Bias가 크게 나타나 안개를 과대탐지하는 문제를 보이고 있다.

산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 - (A Study on the Availability of Spatial and Statistical Data for Assessing CO2 Absorption Rate in Forests - A Case Study on Ansan-si -)

  • 김성훈;김일권;전배석;권혁수
    • 환경영향평가
    • /
    • 제27권2호
    • /
    • pp.124-138
    • /
    • 2018
  • 본 연구는 안산시 산림을 대상으로 연간 $CO_2$ 흡수량 평가를 위한 통계 및 공간자료의 활용성을 검토하였다. 통계자료, 임상도(1:5,000), 산림수종 표준 탄소흡수량 자료들을 활용해 산림의 연간 $CO_2$ 흡수량을 산정하였다. 또한 세분류토지피복도를 이용한 연간 $CO_2$ 흡수량 분석 및 활용성을 검증하였다. 통계자료를 이용한 경우 2010년을 기준으로 연간 $CO_2$ 흡수량의 차이가 컸다. 이는 2010년부터 산림기본통계의 작성 방법이 고도화됨에 따라 임목축적이 급격히 증가한 결과이다. 향후 통계자료를 활용할 경우 최근의 산림기본통계를 이용한 보정이 필요하다. 임상도(1:5,000)와 산림기본통계(2015, 2010)의 시기 차이를 이용한 방법은 수종들의 생장량에 따른 $CO_2$ 흡수량이 반영되지 않았다. 산림수종 표준 탄소흡수량 자료와 임상도(1:5,000)를 이용한 결과 연간 42,369 ton을 흡수하였다. 세분류토지피복도와 산림수종 표준탄소흡수량 자료를 이용한 결과는 40,696 ton이었다. 임상도(1:5,000)를 이용하여 세분류토지피복도를 검증한 결과 p<0.01 수준에서 유의했고, 흡수량 차이는 1,673 ton이었다. 본 연구는 다양한 산림활동의 온실가스 감축 효과 평가에 있어 객관적 기준을 적용하는 일환으로서 의의를 지닌다. 나아가 탄소흡수원과 관련된 토지이용 및 관리 등의 의사결정 지원을 위한 기초자료로 활용이 가능할 것이다.