• Title/Summary/Keyword: Spatial Coverage

Search Result 245, Processing Time 0.024 seconds

Extending Ionospheric Correction Coverage Area by using Extrapolation Methods (외삽기법을 이용한 전리층 보정정보 영역 확장)

  • Kim, Jeongrae;Kim, Mingyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2014
  • The coverage area of GNSS regional ionospheric correction model is mainly determined by the disribution of GNSS ground monitoring stations. Outside the coverage area, GNSS users may receive ionospheric correction signals but the correction does not contain valid correction information. Extrapolation of the correction information can extend the coverage area to some extent. Three interpolation methods, Kriging, biharmonic spline and cubic spline, are tested to evaluate the extrapolation accuracy of the ionospheric delay corrections outside the correction coverage area. IGS (International GNSS Service) ionosphere map data is used to simulate the corrections and to compute the extrapolation error statistics. Among the three methods, biharmonic method yields the best accuracy. The estimation error has a high value during Spring and Fall. The error has a high value in South and East sides and has a low value in North side.

A Study of 5G Systems to Improve Receiver Performance in the mmWave Band (밀리미터파 대역의 수신 성능을 개선하기 위한 5G 시스템에 대한 연구)

  • Myeong-saeng Kim;Dong-ok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.362-368
    • /
    • 2024
  • In this paper, we investigated the performance of directional and omnidirectional precoding schemes when transmitting to improve downlink performance in massive MIMO. Omnidirectional precoding was used to broadcast a common signal, such as a synchronization or control signal, to all users. The main purpose of omnidirectional precoding is to design the precoding matrix so that the signal transmitted in the downlink is the same in all directions and emitted with maximum energy. We propose a flexible omnidirectional precoding method for full-dimensional massive MIMO that can set the spatial coverage range to less than 120 degrees. The constraints of omnidirectionality of all antennas, equal transmit power, and maximum transmit rate are used to design the encoding matrix of the proposed method. The performance was evaluated in terms of spatial coverage by considering changing the spatial coverage of the antenna array by changing the distance between neighboring antennas in the antenna array.

No Blind Spot: Network Coverage Enhancement Through Joint Cooperation and Frequency Reuse

  • Zhong, Yi;Qiao, Pengcheng;Zhang, Wenyi;Zheng, Fu-chun
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.773-783
    • /
    • 2016
  • Both coordinated multi-point transmission and frequency reuse are effective approaches to mitigate inter-cell interference and improve network coverage. The motivation of this work is to explore the manner to effectively utilize the spectrum resource by reasonably combining cooperation and frequency reuse. The $Mat{\acute{e}}rn$ cluster process, which is appropriate to model networks with hot spots, is used to model the spatial distribution of base stations. Two cooperative mechanisms, coherent and non-coherent joint transmission (JT), are analyzed and compared. We also evaluate the effect of multiple antennas and imperfect channel state information. The simulation reveals that the proposed approach to combine cooperation and frequency reuse is effective to improve the network coverage for users located at both the center and the boundary of the cooperative region.

The Analysis of Herbicide Penetration with Spray Deposit Characteristics on Plant Leaves (잎 표면의 분무입자 부착특성에 따른 제초제 침투성 분석)

  • 장영창
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.287-292
    • /
    • 2000
  • The herbicide penetration on weed leaves was spatially analyzed by using chlorophyll fluorescent emission and machine vision technique. Velvetleaf and metribuzin were used as experimental materials in the study. The herbicide spray images were obtained by a combinaton of a fluorescent dye and a UV lighting system. The herbicide penetration was analyzed by means of detecting chlorophyll fluorescent emission under blue-green lighting. According to the experiment results, the number and the size of spray droplets decreased with coverage increasing. The herbicide penetrated mainly along leaf veins and the time for complete penetration over the whole leaf was approximately 100 minutes after herbicide spraying. When the coverage of herbicide droplets on the surface of leaves increased, the speed of herbicide penetration also increased. This study suggested a way of characerizing herbicide spatial penetration and distribution in leaves.

  • PDF

A Joint SD-MRC Method for Downlink Performance Improvement at Coverage Boundaries of Cellular Systems (셀룰러 시스템의 셀 경계에서의 하향 링크 성능 향상을 위한 Joint SD-MRC 수신 방식)

  • Lee, Sang-Dae;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.506-514
    • /
    • 2008
  • At coverage boundaries of cellular systems including the recent WiBro standard which operate with full frequency reuse for increased spectral efficiency, interference signals from the base stations(BS) of adjacent cells degrade the receiver performance. In this paper, a detection method for multiple-antenna mobile stations(MS) is proposed for downlink performance improvement at coverage boundaries of cellular systems. For the performance verification, we obtain the probability density function(pdf) of the effective signal-to-interference and noise ratio(SINR) according to the variation of the interference signals from adjacent cells as well as the number of MS antennas, and calculate the transmission efficiency. We also verify the performance of proposed method with simulation results, to demonstrate a significant performance improvement is achieved over the maximal ratio combining(MRC) and spatial demultiplexing(SD) methods in terms of the effective SINR and the spectral efficiency.

Local and regional steppe vegetation palatability at grazing hotspot areas in Mongolia

  • Amartuvshin, Narantsetsegiin;Kim, Jaebeom;Cho, Nanghyun;Seo, Bumsuk;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Background: Climate and livestock grazing are key agents in determining current Mongolian steppe vegetation communities. Together with plant coverage or biomass, palatability of steppe community is regarded as a useful indicator of grassland degradation, in particular, at grazing hotspots in arid and semi-arid grasslands. This study analyzed relationships between livestock grazing pressure and steppe vegetation palatability at three summer pastures with different aridity (dry, xeric, and mesic) and livestock numbers (1,100, 1,800, and 4,100 sheep units, respectively). At each site, it was surveyed coverage, biomass, and species composition of different palatability groups (i.e., palatable [P], impalatable [IP], and trampling-tolerant [TT]) along a 1-km transect from grazing hotspots (i.e., well) in every July from 2015 to 2018. Results: In results, total vegetation coverage increased with wetness, 7 times greater at mesic site than dry one in averages (33.1% vs. 4.5%); biomass was 3 times higher (47.1 g m-2 vs. 15.7 g m-2). Though P was the dominant palatability group, the importance of IP in total coverage increased with aridity from mesic (0.6%) to dry (40.2%) sites. Whereas, TT increased with livestock numbers across sites. Locally, IP was observed more frequently near the wells and its spatial range of occurrence becomes farther along the transects with aridity across sites from mesic (< 100 m) to dry (< 700 m from the well). Conclusions: Our results showed that the importance of IP and its spatial distribution are different at both local and regional scales, indicating that the palatability parameters are sensitive to discern balance between selective-grazing demand and climate-driven foraging supply in Mongolian rangelands.

Extending Ionospheric Correction Coverage Area By Using A Neural Network Method

  • Kim, Mingyu;Kim, Jeongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.64-72
    • /
    • 2016
  • The coverage area of a GNSS regional ionospheric delay model is mainly determined by the distribution of GNSS ground monitoring stations. Extrapolation of the ionospheric model data can extend the coverage area. An extrapolation algorithm, which combines observed ionospheric delay with the environmental parameters, is proposed. Neural network and least square regression algorithms are developed to utilize the combined input data. The bi-harmonic spline method is also tested for comparison. The IGS ionosphere map data is used to simulate the delays and to compute the extrapolation error statistics. The neural network method outperforms the other methods and demonstrates a high extrapolation accuracy. In order to determine the directional characteristics, the estimation error is classified into four direction components. The South extrapolation area yields the largest estimation error followed by North area, which yields the second-largest error.

Price Competition in Horizontal and Vertical Differentiation : Focusing on the WiBro and HSDPA (수직적.수평적 차별화 시장에서의 서비스 요금전략 : 와이브로와 HSDPA 서비스를 중심으로)

  • Kim, Dow-Han
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.67-78
    • /
    • 2009
  • In this paper, I analyze the mobile broadband services market characterized by vertical and horizontal differentiation. Vertical differentiation as service quality differentiation is based on the transmission speed of mobile internet service and horizontal differentiation as spatial differentiation is based on the service coverage. Theoretical explanations for the competitive price policy have been developed in the game context of WiBro which represent the high quality within the limited service coverage and HSDPA which represent relatively low quality with nation-wide service. When the WiBro has a mobile broadband service quality advantage and the difference in quality is sufficiently low, the price of WiBro with limited service coverage is relatively lower than that of HSDPA. This occurs because the advantage of WiBro's vertical service differentiation is offset by the disadvantage of horizontal differentiation. The difference in the quality of mobile internet service, however, is not too high, the price of WiBro is relatively higher than that of HSDPA. Moreover, when the service quality of WiBro is sufficiently high, the low quality HSDPA service faces no demand.

Temporal and Spatial Characteristics of Sea Surface Winds over the Adjacent Seas of Korean Peninsular - Spectral Analysis.

  • Lee, Heung-Jae;Na, Jung-Yul;Han, Sang-Kyu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.20-25
    • /
    • 1995
  • Surface wind field over an ocean plays a very important role not only to generate wind-driven current, but also to control heat exchange between ocean and atmosphere. However, the surface wind-field used for the ocean circulation and heat exchange is usually estimated by indirect methods because of lack of observed wind data and incomplete spatial coverage. (omitted)

  • PDF

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2016
  • With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.