Social interest in the fine particulate matter has increased significantly since the 2010s, and various efforts have been made to reduce it through environmental plans and policies. To support such environmental planning, in this study, spatial cluster characteristics of fine particulate matter (PM2.5) concentrations were analyzed in the metropolitan area to identify high-risk areas spatially, and the correlation with local environmental characteristics was also confirmed. The PM2.5 concentration for the recent 5 years (2016-2020) was targeted, and representative spatial statistical methods Getis-Ord Gi* and Local Moran's I were applied. As a result of the analysis, the cluster form was different in Getis-Ord Gi* and Local Moran's I, but they show high similarity in direction, therefore complementary results could be obtained. In the high concentration period, the hotspot concentration of the Getis-Ord Gi* method increased, but in Local Moran's I, the HH region, the high concentration cluster, showed a decreasing trend. Hotspots of the Getis-Ord Gi* technique were prominent in the Pyeongtaek-Hwaseong and Yeoju-Icheon regions, and the HH cluster of Local Moran's I was located in the southwest, and the LL cluster was located in the northeast. As in the case of the metropolitan area, in the results of Seoul, there was a phenomenon of division between the northeast and southwest regions. The PM2.5 concentration showed a high correlation with the elevation, vegetation greenness and the industrial area ratio. During the high concentration period, the relation with vegetation greenness increased, and the elevation and industrial area ratio increased in the case of the annual average. This suggests that the function of vegetation can be maximized at a high concentration period, and the influence of topography and industrial areas is large on average. This characteristic was also confirmed in the basic statistics for each major cluster. The spatial clustering characteristics of PM2.5 can be considered in the national land and environmental plan at the metropolitan level. In particular, it will be effective to utilize the clustering characteristics based on the annual average concentration, which contributes to domestic emissions.
The purpose of this study is to reveals spatial relationships between landslides and geospatial data set, map the landslide susceptibility using the relationships and verify the landslide susceptibility using the landslide occurrence data in Bosun area in 1998. Landslide locations were detected from aerial photography and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database using GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. Is extract the relationship between landslides and geospatial database, Bayesian probability methods, likelihood ratio and weight of evidence, were applied and the ratio and contrast value that is W$\^$+/- W$\^$-/ were calculated. The landslide susceptibility index was calculated by summation of the likelihood ratio and contrast value and the landslide susceptibility maps were generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of landslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.
지표면에 대한 정보를 취득하는 기법 중 지금까지 주로 사용되어온 기법은 항공사진 및 위성영상과 같이 평면적인 정보 수집에 중점을 두고 있는 반면, 본 논문에서 다루는 LiDAR(Light Detection And Ranging)는 레이저 측량기술을 이용하여 지표면에 대한 고해상도의 비정규분포 Point 형태의 3차원 정보의 획득이 가능하다. GPS(Global Positioning System) 수신기와 INS(Inertial Navigation System)의 결합을 통해 좌표 값을 제공하게 된다. 이러한 LiDAR의 3차원 Point 정보와 좌표 값을 활용하여 보다 정밀한 3차원 모델링 수행이 가능하다. 본 연구에서는 LiDAR의 반사강도와 기하/지형 자료를 이용하여 도시지역을 대상으로 정밀한 3차원 공간정보자료를 취득하고, 그 자료를 분석하여 도시지역을 높이와 밀도를 기반으로 하여 3차원으로 분류하였다. LiDAR를 통해 획득된 원시자료로부터 지표면에서 반사되는 Point Data의 개수를 지면과 비지면 요소의 비율로 추정하여 지형과 공간적 특성을 파악하고 이에 따라 3차원 토지피복분류도를 작성하였다. 신호의 강약을 구분하는 기준은 통계적 방법(Jenk's Natural Break)을 통해 추정된 값을 사용하였으며, 지표면 반사비율에 따라 세부지역으로 구분하여 크게 고밀도 저밀도 식생지역과 비식생지역으로 구분하였다.
In this study, the longevity index was suggested for researches about social and environmental effects to human immorality and criteria for defining longevity area were developed using statistical analysis. Candidates indexes based on researches about the tend of human death ratio were investigated. As a result statistical analysis, ratio of population over 85 yearn old and over 65 years was selected as a longevity index. Statistical analysis on the longevity distribution at each district showed that 'eup' and 'myun' are appropriate spatial unit to study social and geographical characteristics of longevity. The spatial analysis using the $ArcView^{TM}$ with the suggested index shows the time dependent variances of degree of immorality and spatial relationship between degree of immorality and human migration.
This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.
본 연구에서는 인공위성 데이타를 사용하여 솔잎혹파리에 의한 산림피해를 추출해 봄으로써 인공위성 데이타가 산림의 병충해감지에 유용함을 입증하는 것이 주된 목적이라고 하겠다. 또한 이러한 산림지역 피해지추출에 유용한 Band의 선정과 산림지역에서 나타나는 그림자의 영향을 감소시켜 보다 정확한 분석결과를 얻는 것도 그 목적으로 하고있다. 인공위성 데이타는 LANDSAT-5의 TM을 사용하였으며 분류정확도 향상과 그림자 영향의 감소를 위하여 화상처리기법인 Spatial Filtering과 화상간연산처리를 행하였다. 연구결과 TM 데이타는 산림의 병충해피해지역감지에 유용하였으며 식물에 대한 분류시 Band 4와 Band 5가 효과적이었다. 또한 Spatial Filtering과 화상간연산처리는 그림자영향감소에 효과적이었으며 특히 화상간연산처리는 산림과 기타 지역과의 분류정확도 향상에도 커다란 도움이 되었다.
This paper is an analysis of the Category Individual Residence urban spatial structure along the National Route 20 (Koushu-Kaido), one of the major roads in Japan, and the degree of differences between locations and its changes between the points of time. The analysis was based on the GIS technique. Whilst, previous studies were based on municipal boundaries or mesh units as sources of data, GIS allowed the use of variable geographical units, Roadside zone, Inner zone, North zone, South zone, Blocks. As an example to apply the technology of GIS, 1986's sand 1991's building polygon data of the Urban Planning Bureau of Tokyo Metropolitan Government are used. The layers referred to the analyses is the building polygons with the amount of stories, building area, floor area and the material of the building. Two statistical analysis are executed; one is the test of the regional equality about the number of story of building, building area, floor area and fireproof building ratio.
In this study, we evaluated current raingauge network of Soyanggang dam region applying spatial-correlation analysis and Entropy theory to recommend an optimized raingauge network. In the process of analysis, correlation distance of raingauge stations is estimated and evaluated via spatial-correlation method and entropy method. From this correlation distances, respective influencing radii of each dataset and each methods is assessed. The result of correlation and entropy analysis has estimated correlation distance of 25.546km and influence radius of 7.206km, deducing a decrease of network density from $224.53km^2$ to $122.47km^2$ which satisfy the recommended minimum densities of $250km^2$ in mountainous regions(WMO, 1994) and an increase of basin coverage from 59.3% to 86.8%. As for the elevation analysis the relative evaluation ratio increased from 0.59(current) to 0.92(optimized) resulting an obvious improvement.
임하호 유역은 지질 및 지형이 토사유실에 취약한 구조를 가지고 있어 강우발생시 많은 토사가 호소로 유입되어 고탁수의 원인이 되고 있다. 특히 임하호유역의 농경지가 주로 하천주변에 분포하고 있어 강우시 토사유실로 인한 탁수발생이 큰 지역이다. 따라서, 탁수저감을 위한 수변구역의 체계적인 관리와 대책 마련을 위해서는 수변구역에서 발생하는 토사유실량의 영향을 평가하는 것이 중요하다. 본 연구에서는 GIS 기반 RUSLE 모형을 선정하여 수변구역에서의 토사유실 비율을 평가한 결과 약 12.23%로서 임하호 전체유역과의 면적비율(9.95%) 보다 높게 나타남을 알 수 있었다. 이러한 결과는 수변구역 주변의 농경지비율(27.24%)이 전체유역에 대한 농경지비율(14.96%) 보다 높은 특성이 반영된 것으로 해석된다. 또한 소유역별 분석결과를 볼 때 수변구역중 대곡천 유역이 가장 높은 토사유실량 분포를 나타냈으며, 반변천_10 그리고 서시천 순서로 나타났다.
Multiple-count problem is occurred when rectangle objects span across several buckets. The Cumulative Density (CD) histogram is a technique which solves multiple-count problem by keeping four sub-histograms corresponding to the four points of rectangle. Although it provides exact results with constant response time, there is still a considerable issue. Since it is based on a query window which aligns with a given grid, a number of errors may be occurred when it is applied to real applications. In this paper, we proposed selectivity estimation techniques using the generalized cumulative density histogram based on two probabilistic models: (1) probabilistic model which considers the query window area ratio, (2) probabilistic model which considers intersection area between a given grid and objects. In order to evaluate the proposed methods, we experimented with real dataset and experimental results showed that the proposed technique was superior to the existing selectivity estimation techniques. The proposed techniques can be used to accurately quantify the selectivity of the spatial range query on rectangle objects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.