• 제목/요약/키워드: Sparsity

검색결과 335건 처리시간 0.026초

비부정 행렬 인수분해 차원 감소를 이용한 최근 인접 협력적 여과 (Nearest-Neighbor Collaborative Filtering Using Dimensionality Reduction by Non-negative Matrix Factorization)

  • 고수정
    • 정보처리학회논문지B
    • /
    • 제13B권6호
    • /
    • pp.625-632
    • /
    • 2006
  • 협력적 여과는 사용자 선호도를 예측하기 위해 그 사용자의 유형을 학습하는 데 목적을 둔 기술이다. 협력적 여과 시스템이 전자상거래에서 성공적인 기술일지라도 그들은 데이터의 고차원성과 희박성이라는 문제점을 갖는다. 본 논문에서는 이와 같은 문제점을 해결하기 위하여 비부정 행렬 인수분해(NNMF, Non-negative Matrix Factorization) 방법을 이용한 최근 인접 협력적 여과 방법을 제안한다. 행렬을 분해하기 위한 전처리로서 사용자 변동 계수를 이용하여 사용자-아이템 행렬의 결측치를 채우고, 이를 대상으로 비부정 분해 방식을 적용하여 행렬을 인수분해 한다. 비부정 분해 방식을 적용한 긍정 분해는 사용자들을 의미를 갖는 벡터로써 표현함으로써 사용자들을 의미 관계를 갖는 그룹으로 표현한다. 이와 같이 벡터로 표현된 사용자들은 벡터 유사도에 의해 그들간의 유사도를 계산한다. 계산된 유사도의 정도에 의해 이웃을 결정하고, 이웃들이 평가한 아이템에 대한 흥미도를 기반으로 새로운 사용자가 평가하지 않은 아이템에 대한 결측치를 예측한다.

협력적 여과와 내용 기반 여과의 병합을 통한 추천 시스템에서의 사용자 선호도 발견 (Discovery of User Preference in Recommendation System through Combining Collaborative Filtering and Content based Filtering)

  • 고수정;김진수;김태용;최준혁;이정현
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권6호
    • /
    • pp.684-695
    • /
    • 2001
  • 최근의 추천 시스템은 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위하여 내용 기반 여과 시스템과 협력적 여과 시스템을 병합하는 방법을 사용한다. 협력적 여과 시스템은 부가적인 상품을 예측하기 위해 사용자의 선호도에 대한 데이타베이스를 사용한다. 내용 기반 여과 시스템은 상품의 속성과 사용자의 흥미를 대조함에 의해 아이템을 추천한다. 본 논문에서는 두 가지의 기술을 기계 학습 알고리즘에 응용하고 병합함으로써 사용자의 선호도를 발견하는 방법을 기술한다. 제안된 협력적 여과 방법에서는 유전자 알고리즘을 이용하여 Naive Bayes 분류자에 의해 분류된 아이템을 기반으로 사용자 군집을 생성하며 내용 여과 기법에서는 연관 피드백에 의해 사용자의 흥미를 추출함으로써 사용자의 프로파일을 생성한다. 제안된 방법은 웹문서에 대해 사용자가 평가한 데이타베이스에서 평가되며 기존의 방법보다 높은 성능을 나타냄을 보인다.

  • PDF

QoS Constrained Optimization of Cell Association and Resource Allocation for Load Balancing in Downlink Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1569-1586
    • /
    • 2015
  • This paper considers the optimal cell association and resource allocation for load balancing in a heterogeneous cellular network subject to user's quality-of-service (QoS) constraints. We adopt the proportional fairness (PF) utility maximization formulation which also accommodates the QoS constraints in terms of minimum rate requirements. With equal resource allocation this joint optimization problem is either infeasible or requires relaxation that yields a solution which is difficult to implement. Nevertheless, we show that this joint optimization problem can be effectively solved without any priori assumption on resource allocation and yields a cell association scheme which enforces single BS association for each user. We re-formulated the joint optimization problem as a network-wide resource allocation problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is used to obtain a sparse solution to the re-formulated problem. The cell association scheme is then derived from the sparsity pattern of the solution, which guarantees a single BS association for each user. Compared with the previously proposed method based on equal resource allocation, the proposed framework results in a feasible cell association scheme and yields a robust solution on resource allocation that satisfies the QoS constraints. Our simulations illustrate the impact of user's minimum rate requirements on cell association and demonstrate that the proposed approach achieves load balancing and enforces single BS association for users.

분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링 (User and Item based Collaborative Filtering Using Classification Property Naive Bayesian)

  • 김종훈;김용집;임기욱;이정현;정경용
    • 한국콘텐츠학회논문지
    • /
    • 제7권11호
    • /
    • pp.23-33
    • /
    • 2007
  • 협력적 필터링은 피어슨 상관 계수에 의해 유사도를 구하고, 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 및 확장성의 문제를 가지고 있다. 이러한 문제점을 개선하기 위하여 아이템 기반 협력적 필터링이 실용화되었으나 아이템의 속성을 반영하지는 못한다. 본 논문에서는 기존 추천 시스템의 문제점을 보완하기 위하여 분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링을 제안하였다. 제안한 방법에서는 희박성 문제를 해결하기 위하여 명시적 데이터에 기반한 아이템 유사도와 묵시적 데이터에 기반한 사용자 유사도를 복합적으로 참조한다. 참조 결과에 대해 Naive Bayesian을 적용한다. 또한 속성을 반영하기 위해 아이템 분류속성간의 유사관계 순위를 아이템 유사도 계산에 반영함으로써 정확성을 높일 수 있었다.

도심 영상에서의 비음수행렬분해를 이용한 차량 인식 (Vehicle Recognition using NMF in Urban Scene)

  • 반재민;이병래;강현철
    • 한국통신학회논문지
    • /
    • 제37권7C호
    • /
    • pp.554-564
    • /
    • 2012
  • 차량인식은 차량 후보영역 검출단계와 검출된 후보 영역에서 특징을 기반으로 차량을 검증하는 차량 검증단계로 나누어진다. 선형 변환 방식의 특징은 차원 감소 효과와 통계적인 특징을 지니게 되어, 이동이나 회전에 강인한 특성을 갖는다. 선형 변환 방식 중 비음수행렬분해(Non-negative Matrix Factorization, NMF)는 부분 기반 표현 방식으로 차량의 국소적인 특징을 기저벡터로 사용하여 희소성을 갖는 특징을 추출할 수 있기 때문에 도심영상에서 발생하는 차폐 영역에 따른 인식률 저하를 방지할 수 있다. 본 논문에서는 차량 인식에 적합한 NMF 특징 추출 방법을 제안하고, 인식률을 검증하였다. 또한 희소성 제약 조건을 이용하여 기저 벡터에 희소성을 가지는 SNMF(Sparse NMF)와 LVQ2(Learning Vector Quantization) 신경 회로망을 결합하여 차폐 영역에 대한 차량 인식 효율을 기존의 NMF를 이용한 방법과 비교하였다. NMF를 이용하는 특징은 차량이 혼재되어 차폐 영역이 빈번히 발생하는 도심에서도 강건한 특징임을 보였다.

밀리미터파 채널 추정을 위한 압축 센싱 기법 (Compressed Sensing Techniques for Millimeter Wave Channel Estimation)

  • 한용희;이정우
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.25-30
    • /
    • 2017
  • 밀리미터 대역은 매우 넓은 대역폭을 활용할 수 있어 5G 시스템의 데이터 전송률을 높일 핵심 요소로 기대되고 있다. 해당 대역은 경로 감쇄가 심한 특성을 갖지만, 짧은 파장 덕분에 크지 않은 공간에 매우 많은 안테나를 배치할 수 있어 경로 감쇄를 상쇄할 수 있다. 이처럼 많은 안테나를 활용하는 채널을 기존의 기법으로 추정하기 위해서는 큰 오버헤드가 발생해, 짧은 시간에 트레이닝을 수행하는 채널 추정 기법이 요구된다. 밀리미터파 채널은 매우 적은 수의 유효 경로가 존재하는 특징을 갖기에 적은 수의 관찰 값으로부터 희소 신호를 검출하는 압축센싱 기법의 활용이 효과적일 것으로 기대된다. 본 논문에서는 밀리미터파 채널 추정을 위한 압축 센싱 기법을 소개한다. 첫째로, 지연 확산이 존재하는 다중 경로 채널 추정을 표준적인 압축 센싱 문제로 변환하는 방식을 제시한다. 또한 압축 센싱을 통해 채널 추정을 수행하기 위해서는 좋은 특성을 갖는 검출 행렬을 생성하는 것이 중요하기에, 양자화된 phase shifter로 임의 발생시킨 검출 행렬의 mutual incoherence 특성을 수치적으로 분석한다.

상수관망해석을 위한 도학의 적용 (Applications of Graph Theory for the Pipe Network Analysis)

  • 박재홍;한건연
    • 한국수자원학회논문집
    • /
    • 제31권4호
    • /
    • pp.439-448
    • /
    • 1998
  • 대규모의 배수관망 시스템에서 유량해석을 위한 기법들이 많이 있지만 가장 널리 사용되고 있는 기법은 선형화 기법이다. 이 방법은 연속방정식과 에너지 방정식을 연립하여 해석하므로 이론적으로는 간단하나 실제 시스템에 적용을 위해서는 연립방정식 해석시 생성되는 계수매트릭스의 대각행력에 '0'이 발생하는 등 매우 큰 이산화된 계수 매트릭스의 처리가 문제가 되었다. 본 연구에서는 ill-condition 계수매트릭스의 발생을 배제하기 위해 도학이론으로부터 선형독립적인 폐합회로를 찾는 기법을 상수관망해석에 적용하여 선형화기법의 positive-definite 계수매트릭스를 만드는 기법을 개발하였다. 개발된 알고리듬의 적용성을 시험하고자 22개 가상관로 및 142개 관로를 가진 대구 인근의 실제 관망자료를 이용하여 유량해석을 실시하였다. 유량해석 결과 본 알고리듬이 적용된 모형에서는 가상관망 및 실제관로에서 수렴의 실패없이 원활하게 계산이 이루어지고 있었다. 본 연구결과는 관로내 정상상태 유량해석을 위해 효율적으로 이용될 것이 기대된다.

  • PDF

Basis pursuit denoising을 사용한 두 수신기 간 시간 지연 추정 알고리즘 (Time delay estimation between two receivers using basis pursuit denoising)

  • 임준석;정명준
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.285-291
    • /
    • 2017
  • 두 개 수신기에 들어오는 신호 간의 시간 지연 값을 추정하기 위한 방법들이 연구되고 있다. 그중에서 채널 추정 기법을 기반으로 한 방법의 경우는 두 수신기의 입력 신호간의 상대적인 지연을 채널의 임펄스 응답처럼 추정하는 방법이다. 이 경우에는 해당 채널의 특성이 희소 채널의 특성을 가지고 있다. 기존의 방법들은 채널의 희소성을 이용하지 못하고 있는 방법이 대부분이다. 본 논문에서는 채널의 희소성을 이용하기 위하여 희소 신호 최적화 방법의 하나인 BPD(Basis Pursuit Denoising) 최적화 기법을 사용한 시간 지연 추정 방법을 제안한다. 제안한 방법을 기존의 일반 상호 상관(Generalized Cross Correlation, GCC) 방법과 적응 소유치 분해법 및 희소 신호 추정법의 일종인 RZA-LMS(Reweighted Zero-Attracting Least Mean Square)들과 비교하여, 백색 가우시안 신호원과 유색 신호원 및 해양 포유류 신호원에 대해서 비교 실험을 하였다. 그 결과 갑자기 추정성능이 열화되는 문턱 현상이 늦게 나타나거나 훨씬 줄어드는 것을 보였다.

SBS 수목드라마에서 나타난 등장인물 관계분석 -그레마스 행위소 모델 중심으로- (A Analysis on the Relations among Characters shown in SBS Wednesday and Thursday Dramas -Focusing on the Greimas' Actantial Model-)

  • 임운주
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.481-486
    • /
    • 2015
  • 이 연구는 SBS 수목드라마에서 나타난 등장인물의 행위들에서 만들어 내는 다양한 관계들이 어떻게 소통되고 있는지를 그레마스 행위소 모델을 통해 의미를 분석하고자 하였다. 주체와 대상의 관계에서 주체가 가지고 있는 결핍구조를 분석하여 이러한 관계에서 발생하는 문제들을 살펴본다면 서로 다른 장르에서 나타나는 드라마 속의 등장인물 관계를 종합적으로 분석할 수 있다. 이를 해석해보면 같은 사건에서 시작된 발신된 주체와 대상의 결핍 구조는 다르게 나타난 반면, 우연한 사건으로 인한 주체와 대상은 같은 결핍구조를 가지고 있었다. 주체와 발신자의 관계에서는 주체보다 나약하고 보호 받아야하는 불쌍한 인물들로 설정되었을 때는 극중 역할이 제한적이지만 발신자가 주체에게 적대자로써의 역할을 같이하는 구조에서는 주체보다 권위적이었다. 세 작품 속에서 나타난 반대자들은 결국 주체와 대상에게 또 다른 협력자들로 변절하며 사건 해결에 도움을 주며, 불행해지기보다는 한결 더 성숙해지는 경향이 있었다.

협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법 (Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System)

  • 이오준;백영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.61-69
    • /
    • 2014
  • 협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.