• Title/Summary/Keyword: Sparse spectrum

Search Result 22, Processing Time 0.016 seconds

Gaussian models for bond strength evaluation of ribbed steel bars in concrete

  • Prabhat R., Prem;Branko, Savija
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.651-664
    • /
    • 2022
  • A precise prediction of the ultimate bond strength between rebar and surrounding concrete plays a major role in structural design, as it effects the load-carrying capacity and serviceability of a member significantly. In the present study, Gaussian models are employed for modelling bond strength of ribbed steel bars embedded in concrete. Gaussian models offer a non-parametric method based on Bayesian framework which is powerful, versatile, robust and accurate. Five different Gaussian models are explored in this paper-Gaussian Process (GP), Variational Heteroscedastic Gaussian Process (VHGP), Warped Gaussian Process (WGP), Sparse Spectrum Gaussian Process (SSGP), and Twin Gaussian Process (TGP). The effectiveness of the models is also evaluated in comparison to the numerous design formulae provided by the codes. The predictions from the Gaussian models are found to be closer to the experiments than those predicted using the design equations provided in various codes. The sensitivity of the models to various parameters, input feature space and sampling is also presented. It is found that GP, VHGP and SSGP are effective in prediction of the bond strength. For large data set, GP, VHGP, WGP and TGP can be computationally expensive. In such cases, SSGP can be utilized.

Resource allocation for Millimeter Wave mMIMO-NOMA System with IRS

  • Bing Ning;Shuang Li;Xinli Wu;Wanming Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2047-2066
    • /
    • 2024
  • In order to improve the coverage and achieve massive spectrum access, non-orthogonal multiple access (NOMA) technology is applied in millimeter wave massive multiple-input multiple-output (mMIMO) communication network. However, the power assumption of active sensors greatly limits its wide applications. Recently, Intelligent Reconfigurable Surface (IRS) technology has received wide attention due to its ability to reduce power consumption and achieve passive transmission. In this paper, spectral efficiency maximum problem in the millimeter wave mMIMO-NOMA system with IRS is considered. The sparse RF chain antenna structure is designed at the base station based on continuous phase modulation. Furthermore, a joint optimization problem for power allocation, power splitting, analog precoding and IRS reconfigurable matrices are constructed, which aim to achieve the maximum spectral efficiency of the system under the constraints of user's quality of service, minimum energy harvesting and total transmit power. A three-stage iterative algorithm is proposed to solve the above mentioned non-convex optimization problems. We obtain the local optimal solution by fixing some optimization parameters firstly, then introduce the relaxation variables to realize the global optimal solution. Simulation results show that the spectral efficiency of the proposed scheme is superior compared to the conventional system with phase shifter modulation. It is also demonstrated that IRS can effectively assist mmWave communication and improve the system spectral efficiency.