• Title/Summary/Keyword: Sparse spectrum

Search Result 20, Processing Time 0.036 seconds

Broadband Spectrum Sensing of Distributed Modulated Wideband Converter Based on Markov Random Field

  • Li, Zhi;Zhu, Jiawei;Xu, Ziyong;Hua, Wei
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • The Distributed Modulated Wideband Converter (DMWC) is a networking system developed from the Modulated Wideband Converter, which converts all sampling channels into sensing nodes with number variables to implement signal undersampling. When the number of sparse subbands changes, the number of nodes can be adjusted flexibly to improve the reconstruction rate. Owing to the different attenuations of distributed nodes in different locations, it is worthwhile to find out how to select the optimal sensing node as the sampling channel. This paper proposes the spectrum sensing of DMWC based on a Markov random field (MRF) to select the ideal node, which is compared to the image edge segmentation. The attenuation of the candidate nodes is estimated based on the attenuation of the neighboring nodes that have participated in the DMWC system. Theoretical analysis and numerical simulations show that neighboring attenuation plays an important role in determining the node selection, and selecting the node using MRF can avoid serious transmission attenuation. Furthermore, DMWC can greatly improve recovery performance by using a Markov random field compared with random selection.

Novel Schemes to Optimize Sampling Rate for Compressed Sensing

  • Zhang, Yifan;Fu, Xuan;Zhang, Qixun;Feng, Zhiyong;Liu, Xiaomin
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.517-524
    • /
    • 2015
  • The fast and accurate spectrum sensing over an ultra-wide bandwidth is a big challenge for the radio environment cognition. Considering sparse signal feature, two novel compressed sensing schemes are proposed, which can reduce compressed sampling rate in contrast to the traditional scheme. One algorithm is dynamically adjusting compression ratio based on modulation recognition and identification of symbol rate, which can reduce compression ratio. Furthermore, without priori information of the modulation and symbol rate, another improved algorithm is proposed with the application potential in practice, which does not need to reconstruct the signals. The improved algorithm is divided into two stages, which are the approaching stage and the monitoring stage. The overall sampling rate can be dramatically reduced without the performance deterioration of the spectrum detection compared to the conventional static compressed sampling rate algorithm. Numerous results show that the proposed compressed sensing technique can reduce sampling rate by 35%, with an acceptable detection probability over 0.9.

Research on a Spectral Reconstruction Method with Noise Tolerance

  • Ye, Yunlong;Zhang, Jianqi;Liu, Delian;Yang, Yixin
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.562-575
    • /
    • 2021
  • As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.

Determination of Parameter Value in Constraint of Sparse Spectrum Fitting DOA Estimation Algorithm (희소성 스펙트럼 피팅 도래각 추정 알고리즘의 제한조건에 포함된 상수 결정법)

  • Cho, Yunseung;Paik, Ji-Woong;Lee, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.917-920
    • /
    • 2016
  • SpSF algorithm is direction-of-arrival estimation algorithm based on sparse representation of incident signlas. Cost function to be optimized for DOA estimation is multi-dimensional nonlinear function, which is hard to handle for optimization. After some manipulation, the problem can be cast into convex optimiztion problem. Convex optimization problem tuns out to be constrained optimization problem, where the parameter in the constraint has to be determined. The solution of the convex optimization problem is dependent on the specific parameter value in the constraint. In this paper, we propose a rule-of-thumb for determining the parameter value in the constraint. Based on the fact that the noise in the array elements is complex Gaussian distributed with zero mean, the average of the Frobenius norm of the matrix in the constraint can be rigorously derived. The parameter in the constrint is set to be two times the average of the Frobenius norm of the matrix in the constraint. It is shown that the SpSF algorithm actually works with the parameter value set by the method proposed in this paper.

Detection of low frequency tonal signal of underwater radiated noise via compressive sensing (압축센싱 기법을 적용한 선박 수중 방사 소음 신호의 저주파 토널 탐지)

  • Kim, Jinhong;Shim, Byonghyo;Ahn, Jae-Kyun;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Compressive sensing allows recovering an original signal which has a small dimension of the signal compared to the dimension of the entire signal in a short period of time through a small number of observations. In this paper, we proposed a method for detecting tonal signal which caused by the machinery component of a vessel such as an engine, gearbox, and support elements. The tonal signal can be modeled as the sparse signal in the frequency domain when it compares to whole spectrum range. Thus, the target tonal signal can be estimated by S-OMP (Simultaneous-Orthogonal Matching Pursuit) which is one of the sparse signal recovery algorithms. In simulation section, we showed that S-OMP algorithm estimated more precise frequencies than the conventional FFT (Fast Fourier Transform) thresholding algorithm in low SNR (Signal to Noise Ratio) region.

Performance of direction-of-arrival estimation of SpSF in frequency domain: in case of non-uniform sensor array (주파수 영역으로 구현한 SpSF알고리듬: 비균일 센서 환경에서의 도래각 추정 성능)

  • Paik, Ji Woong;Zhang, Xueyang;Hong, Wooyoung;Hong, Jungpyo;Kim, Seongil;Lee, Joon-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Currently, studies on the estimation algorithm based on compressive sensing are actively underway, but to the best of our knowledge, no study on the performance of the Sparse Spectrum Fitting (SpSF) algorithm in nonuniform sensor arrays has been made. This paper deals with the derivation of the compressive sensing based covariance fitting algorithm extended to the frequency domain. In addition, it shows the performance of directon-of-arrival estimation of the frequency domain SpSF algorithm in non-uniform linear sensor array system and the sensor array failure situation.

A Study on the Sources of Ambient Sea Noise in the Coastal Water of Pusan (부산 연안에서의 수중소음원에 관한 연구)

  • 김성부
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.180-183
    • /
    • 1990
  • The variability of ambient noise with time and water depth is measured in the coastal water of Pusan. The Noise Spectrum levels are relatively high, and have standard deviations amounting to 3 to 4 dB with time and 2 to 3 dB with water depth in the B area of high ship activity. On the other hand, in the A area where shipping is sparse the standard deviations are only 1 to 2 dB with time and water depth respectively. These results show that ship traffic is one of the dominent sources at frequencies greater than 500Hz.

  • PDF

A Multi-Layer Graphical Model for Constrained Spectral Segmentation

  • Kim, Tae Hoon;Lee, Kyoung Mu;Lee, Sang Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.437-438
    • /
    • 2011
  • Spectral segmentation is a major trend in image segmentation. Specially, constrained spectral segmentation, inspired by the user-given inputs, remains its challenging task. Since it makes use of the spectrum of the affinity matrix of a given image, its overall quality depends mainly on how to design the graphical model. In this work, we propose a sparse, multi-layer graphical model, where the pixels and the over-segmented regions are the graph nodes. Here, the graph affinities are computed by using the must-link and cannot-link constraints as well as the likelihoods that each node has a specific label. They are then used to simultaneously cluster all pixels and regions into visually coherent groups across all layers in a single multi-layer framework of Normalized Cuts. Although we incorporate only the adjacent connections in the multi-layer graph, the foreground object can be efficiently extracted in the spectral framework. The experimental results demonstrate the relevance of our algorithm as compared to existing popular algorithms.

  • PDF

Sparsification of Digital Images Using Discrete Rajan Transform

  • Mallikarjuna, Kethepalli;Prasad, Kodati Satya;Subramanyam, M.V.
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.754-764
    • /
    • 2016
  • The exhaustive list of sparsification methods for a digital image suffers from achieving an adequate number of zero and near-zero coefficients. The method proposed in this paper, which is known as the Discrete Rajan Transform Sparsification, overcomes this inadequacy. An attempt has been made to compare the simulation results for benchmark images by various popular, existing techniques and analyzing from different aspects. With the help of Discrete Rajan Transform algorithm, both lossless and lossy sparse representations are obtained. We divided an image into $8{\times}8-sized$ blocks and applied the Discrete Rajan Transform algorithm to it to get a more sparsified spectrum. The image was reconstructed from the transformed output of the Discrete Rajan Transform algorithm with an acceptable peak signal-to-noise ratio. The performance of the Discrete Rajan Transform in providing sparsity was compared with the results provided by the Discrete Fourier Transform, Discrete Cosine Transform, and the Discrete Wavelet Transform by means of the Degree of Sparsity. The simulation results proved that the Discrete Rajan Transform provides better sparsification when compared to other methods.

Gaussian models for bond strength evaluation of ribbed steel bars in concrete

  • Prabhat R., Prem;Branko, Savija
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.651-664
    • /
    • 2022
  • A precise prediction of the ultimate bond strength between rebar and surrounding concrete plays a major role in structural design, as it effects the load-carrying capacity and serviceability of a member significantly. In the present study, Gaussian models are employed for modelling bond strength of ribbed steel bars embedded in concrete. Gaussian models offer a non-parametric method based on Bayesian framework which is powerful, versatile, robust and accurate. Five different Gaussian models are explored in this paper-Gaussian Process (GP), Variational Heteroscedastic Gaussian Process (VHGP), Warped Gaussian Process (WGP), Sparse Spectrum Gaussian Process (SSGP), and Twin Gaussian Process (TGP). The effectiveness of the models is also evaluated in comparison to the numerous design formulae provided by the codes. The predictions from the Gaussian models are found to be closer to the experiments than those predicted using the design equations provided in various codes. The sensitivity of the models to various parameters, input feature space and sampling is also presented. It is found that GP, VHGP and SSGP are effective in prediction of the bond strength. For large data set, GP, VHGP, WGP and TGP can be computationally expensive. In such cases, SSGP can be utilized.