• Title/Summary/Keyword: Sparse signal

Search Result 124, Processing Time 0.017 seconds

Convergence Complexity Reduction for Block-based Compressive Sensing Reconstruction (블록기반 압축센싱 복원을 위한 수렴 복잡도 저감)

  • Park, Younggyun;Shim, Hiuk Jae;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.240-249
    • /
    • 2014
  • According to the compressive sensing theory, it is possible to perfectly reconstruct a signal only with a fewer number of measurements than the Nyquist sampling rate if the signal is a sparse signal which satisfies a few related conditions. From practical viewpoint for image applications, it is important to reduce its computational complexity and memory burden required in reconstruction. In this regard, a Block-based Compressive Sensing (BCS) scheme with Smooth Projected Landweber (BCS-SPL) has been already introduced. However, it still has the computational complexity problem in reconstruction. In this paper, we propose a method which modifies its stopping criterion, tolerance, and convergence control to make it converge faster. Experimental results show that the proposed method requires less iterations but achieves better quality of reconstructed image than the conventional BCS-SPL.

Direction of Arrival Estimation in Colored Noise Using Wavelet Decomposition (웨이브렛 분해를 이용한 유색잡음 환경하의 도래각 추정)

  • Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.48-59
    • /
    • 2000
  • Eigendecomposition based direction-of-arrival(DOA) estimation algorithm such as MUSIC(multiple signal classification) is known to perform well and provide high resolution in white noise environment. However, its performance degrades severely when the noise process is not white. In this paper we consider the DOA estimation problem in a colored noise environment as a problem of extracting periodic signals from noise, and we take the problem to the wavelet domain. Covariance matrix of multiscale components which are obtained by taking wavelet decomposition on the noise has a special structure which can be approximated with a banded sparse matrix. Compared with noise the correlation between multiscale components of narrowband signal decays slowly, hence the covariance matrix does not have a banded structure. Based on this fact we propose a DOA estimation algorithm that transforms the covariance matrix into wavelet domain and removes noise components located in specific bands. Simulations have been carried out to analyze the proposed algorithm in colored noise processes with various correlation properties.

  • PDF

Detection of tonal frequency of underwater radiated noise via atomic norm minimization (Atomic norm minimization을 통한 수중 방사 소음 신호의 토널 주파수 탐지)

  • Kim, Junhan;Kim, Jinhong;Shim, Byonghyo;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.543-548
    • /
    • 2019
  • The tonal signal caused by the machinery component of a vessel such as an engine, gearbox, and support elements, can be modeled as a sparse signal in the frequency domain. Recently, compressive sensing based techniques that recover an original signal using a small number of measurements in a short period of time, have been applied for the tonal frequency detection. These techniques, however, cannot avoid a basis mismatch error caused by the discretization of the frequency domain. In this paper, we propose a method to detect the tonal frequency with a small number of measurements in the continuous domain by using the atomic norm minimization technique. From the simulation results, we demonstrate that the proposed technique outperforms conventional methods in terms of the exact recovery ratio and mean square error.

Smoothed Group-Sparsity Iterative Hard Thresholding Recovery for Compressive Sensing of Color Image (컬러 영상의 압축센싱을 위한 평활 그룹-희소성 기반 반복적 경성 임계 복원)

  • Nguyen, Viet Anh;Dinh, Khanh Quoc;Van Trinh, Chien;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Compressive sensing is a new signal acquisition paradigm that enables sparse/compressible signal to be sampled under the Nyquist-rate. To fully benefit from its much simplified acquisition process, huge efforts have been made on improving the performance of compressive sensing recovery. However, concerning color images, compressive sensing recovery lacks in addressing image characteristics like energy distribution or human visual system. In order to overcome the problem, this paper proposes a new group-sparsity hard thresholding process by preserving some RGB-grouped coefficients important in both terms of energy and perceptual sensitivity. Moreover, a smoothed group-sparsity iterative hard thresholding algorithm for compressive sensing of color images is proposed by incorporating a frame-based filter with group-sparsity hard thresholding process. In this way, our proposed method not only pursues sparsity of image in transform domain but also pursues smoothness of image in spatial domain. Experimental results show average PSNR gains up to 2.7dB over the state-of-the-art group-sparsity smoothed recovery method.

Improvement of Bandwidth Efficiency for High Transmission Capacity of Contents Streaming Data using Compressive Sensing Technique (컨텐츠 스트리밍 데이터의 전송효율 증대를 위한 압축센싱기반 전송채널 대역폭 절감기술 연구)

  • Jung, Eui-Suk;Lee, Yong-Tae;Han, Sang-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2141-2145
    • /
    • 2015
  • A new broadcasting signal transmission, which can save its channel bandwidth using compressive sensing(CS), is proposed in this paper. A new compression technique, which uses two dimensional discrete wavelet transform technique, is proposed to get high sparsity of multimedia image. A L1 minimization technique based on orthogonal matching pursuit is also introduced in order to reconstruct the compressed multimedia image. The CS enables us to save the channel bandwidth of wired and wireless broadcasting signal because various transmitted data are compressed using it. A $256{\times}256$ gray-scale image with compression rato of 20 %, which is sampled by 10 Gs/s, was transmitted to an optical receiver through 20-km optical transmission and then was reconstructed successfully using L1 minimization (bit error rate of $10^{-12}$ at the received optical power of -12.2 dB).

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.

Permutation test for a post selection inference of the FLSA (순열검정을 이용한 FLSA의 사후추론)

  • Choi, Jieun;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.863-874
    • /
    • 2021
  • In this paper, we propose a post-selection inference procedure for the fused lasso signal approximator (FLSA). The FLSA finds underlying sparse piecewise constant mean structure by applying total variation (TV) semi-norm as a penalty term. However, it is widely known that this convex relaxation can cause asymptotic inconsistency in change points detection. As a result, there can remain false change points even though we try to find the best subset of change points via a tuning procedure. To remove these false change points, we propose a post-selection inference for the FLSA. The proposed procedure applies a permutation test based on CUSUM statistic. Our post-selection inference procedure is an extension of the permutation test of Antoch and Hušková (2001) which deals with single change point problems, to multiple change points detection problems in combination with the FLSA. Numerical study results show that the proposed procedure is better than naïve z-tests and tests based on the limiting distribution of CUSUM statistics.

Broadband Spectrum Sensing of Distributed Modulated Wideband Converter Based on Markov Random Field

  • Li, Zhi;Zhu, Jiawei;Xu, Ziyong;Hua, Wei
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • The Distributed Modulated Wideband Converter (DMWC) is a networking system developed from the Modulated Wideband Converter, which converts all sampling channels into sensing nodes with number variables to implement signal undersampling. When the number of sparse subbands changes, the number of nodes can be adjusted flexibly to improve the reconstruction rate. Owing to the different attenuations of distributed nodes in different locations, it is worthwhile to find out how to select the optimal sensing node as the sampling channel. This paper proposes the spectrum sensing of DMWC based on a Markov random field (MRF) to select the ideal node, which is compared to the image edge segmentation. The attenuation of the candidate nodes is estimated based on the attenuation of the neighboring nodes that have participated in the DMWC system. Theoretical analysis and numerical simulations show that neighboring attenuation plays an important role in determining the node selection, and selecting the node using MRF can avoid serious transmission attenuation. Furthermore, DMWC can greatly improve recovery performance by using a Markov random field compared with random selection.

Target Classification in Sparse Sampling Acoustic Sensor Networks using DTW-Cosine Algorithm (저비율 샘플링 음향 센서네트워크에서 DTW-Cosine 알고리즘을 이용한 목표물 식별기법)

  • Kim, Young-Soo;Kang, Jong-Gu;Kim, Dae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.221-225
    • /
    • 2008
  • In this paper, to avoid the frequency analysis requiring a high sampling rate, time-warped similarity measure algorithms, which are able to classify objects even with a low-rate sampling rate as time- series methods, are presented and proposed the DTW-Cosine algorithm, as the best classifier among them in wireless sensor networks. Two problems, local time shifting and spatial signal variation, should be solved to apply the time-warped similarity measure algorithms to wireless sensor networks. We find that our proposed algorithm can overcome those problems very efficiently and outperforms the other algorithms by at least 10.3% accuracy.

Adaptive Beamforming Applied to Bearing Estimation of DIFAR Signal with Highly Directional Noise (높은 방향성 소음환경에서 DIFAR 수신센서 신호의 적응 빔형성에 의한 방위추정)

  • Shin, Kee-Cheol;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.474-481
    • /
    • 2011
  • Conventional beamforming is ineffective in producing directional information in system with sparse degree of the freedom such as DIFAR (DIrectional Frequency Analysis and Recording) sonobuoy and in the presence of high directional noise. In this paper, Adaptive beamforming techniques are applied to produce directional spectra from a small number of sensors in highly directional noise environment. Conventional method as well as minimum variance and eigenvectors as adaptive method are evaluated via numerical test and real data.