We report a method for optical monitoring of tumors in an animal model using optical coherence tomography (OCT). In a spectral domain OCT system, a superluminescent diode light source with a full width of 66 nm at half maximum and peak wavelength of 950 nm was used to take images having an axial resolution of 6.8 ${\mu}m$. Cancer cells of PC-3 were cultured and inoculated into the hypodermis of auricle tissues in BALB/c nude mice. We observed tumor formation and growth at the injection region of cancer cells in vivo and obtained the images of tumor mass center and sparse circumferences. On the $5^{th}$ day from an inoculation of cancer cells, histological images of the tumor region using cross-sectional slicing and dye staining of specimens were taken in order to confirm the correlation with the high resolution OCT images. The OCT image of tumor mass compared with normal tissues was analyzed using its A-scan data so as to obtain a tissue attenuation rate which increases according to tumor growth.
Background: Pseudorabies (PR), caused by the pseudorabies virus (PRV), is an endemic disease in some regions of China. Although there are many reports on epidemiological investigations into pseudorabies, information on PRV gI antibody dynamics in one pig farm is sparse. Objectives: To diagnose PR and analyze the course of PR eradication in one pig farm. Methods: Ten brains and 1,513 serum samples from different groups of pigs in a pig farm were collected to detect PRV gE gene and PRV gI antibody presence using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: The July 2015 results indicated that almost all brain samples were PRV gE gene positive, but PRV gI antibody results in the serum samples of the same piglets were all negative. In the boar herd, from October 2015 to July 2018 three positive individuals were culled in October 2015, and the negative status of the remaining boars was maintained in the following tests. In the sow herd, the PRV gI antibody positive rate was always more than 70% from October 2015 to October 2017; however, it decreased to 27% in January 2018 but increased to 40% and 52% in April and July 2018, respectively. The PRV gI antibody positive rate in 100-day pigs markedly decreased in October 2016 and was maintained at less than 30% in the following tests. For 150-day pigs, the PRV gI antibody positive rate decreased notably to 10% in April 2017 and maintained a negative status from July 2017. The positive trend of PRV gI antibody with an increase in pig age remarkably decreased in three tests in 2018. Conclusions: The results indicate that serological testing is not sensitive in the early stage of a PRV infection and that gilt introduction is a risk factor for a PRV-negative pig farm. The data on PRV gI antibody dynamics can provide reference information for pig farms wanting to eradicate PR.
Park, Jae Eun;Kim, Hyeon Woo;Yun, Sung Hwan;Kim, Sun Jung
Journal of Ginseng Research
/
v.45
no.6
/
pp.754-762
/
2021
Background: Ginsenoside Rh2, a major saponin derivative in ginseng extract, is recognized for its anti-cancer activities. Compared to coding genes, studies on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) that are regulated by Rh2 in cancer cells, especially on competitive endogenous RNA (ceRNA) are sparse. Methods: LncRNAs whose promoter DNA methylation level was significantly altered by Rh2 were screened from methylation array data. The effect of STXBP5-AS1, miR-4425, and RNF217 on the proliferation and apoptosis of MCF-7 breast cancer cells was monitored in the presence of Rh2 after deregulating the corresponding gene. The ceRNA relationship between STXBP5-AS1 and miR-4425 was examined by measuring the luciferase activity of a recombinant luciferase/STXBP5-AS1 plasmid construct in the presence of mimic miR-4425. Results: Inhibition of STXBP5-AS1 decreased apoptosis but stimulated growth of the MCF-7 cells, suggesting tumor-suppressive activity of the lncRNA. MiR-4425 was identified to have a binding site on STXBP5-AS1 and proven to be downregulated by STXBP5-AS1 as well as by Rh2. In contrast to STXBP5-AS1, miR-4425 showed pro-proliferation activity by inducing a decrease in apoptosis but increased growth of the MCF-7 cells. MiR-4425 decreased luciferase activity from the luciferase/STXBP5-AS1 construct by 26%. Screening the target genes of miR-4425 and Rh2 revealed that Rh2, STXBP5-AS1, and miR-4425 consistently regulated tumor suppressor RNF217 at both the RNA and protein level. Conclusion: LncRNA STXBP5-AS1 is upregulated by Rh2 via promoter hypomethylation and acts as a ceRNA, sponging the oncogenic miR-4425. Therefore, Rh2 controls the STXBP5-AS1/miR-4425/RNF217 axis to suppress breast cancer cell growth.
Kang, Ha Yeong;Oh, Chang Bo;Won, Yong Sun;Liu, J. Jay;Lee, Chang Jun
Journal of the Korean Society of Safety
/
v.36
no.1
/
pp.1-8
/
2021
To simulate a process model in the field of chemical engineering, it is very important to identify the physical properties of novel materials as well as existing materials. However, it is difficult to measure the physical properties throughout a set of experiments due to the potential risk and cost. To address this, this study aims to develop a property prediction model based on the group contribution method for aromatic chemical compounds including benzene rings. The benzene rings of aromatic materials have a significant impact on their physical properties. To establish the prediction model, 42 important functional groups that determine the physical properties are considered, and the total numbers of functional groups on 147 aromatic chemical compounds are counted to prepare a dataset. Support vector regression is employed to prepare a prediction model to handle sparse and high-dimensional data. To verify the efficacy of this study, the results of this study are compared with those of previous studies. Despite the different datasets in the previous studies, the comparison indicated the enhanced performance in this study. Moreover, there are few reports on predicting the physical properties of aromatic compounds. This study can provide an effective method to estimate the physical properties of unknown chemical compounds and contribute toward reducing the experimental efforts for measuring physical properties.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.1-7
/
2021
In this paper, we propose a feature selection technique for multi-label classification. Many existing feature selection techniques have selected features by calculating the relation between features and labels such as a mutual information scale. However, since the mutual information measure requires a joint probability, it is difficult to calculate the joint probability from an actual premise feature set. Therefore, it has the disadvantage that only a few features can be calculated and only local optimization is possible. Away from this regional optimization problem, we propose a feature selection technique that constructs a low-rank space in the entire given feature space and selects features with sparsity. To this end, we designed a regression-based objective function using Nuclear norm, and proposed an algorithm of gradient descent method to solve the optimization problem of this objective function. Based on the results of multi-label classification experiments on four data and three multi-label classification performance, the proposed methodology showed better performance than the existing feature selection technique. In addition, it was showed by experimental results that the performance change is insensitive even to the parameter value change of the proposed objective function.
Background: Upfront surgery followed by systemic treatment is recommended to treat clinical stage I-IIA small cell lung cancer (SCLC), but data on the clinical outcomes are sparse. Thus, this study evaluated the stage migration and long-term prognosis of surgically treated clinical stage I-IIA SCLC. Methods: We retrospectively reviewed 49 patients with clinical stage I-IIA SCLC who underwent upfront surgery between 2000 and 2020. Additionally, we re-evaluated the TNM (tumor-node-metastasis) staging according to the eighth edition of the American Joint Committee on Cancer staging system for lung cancer. Results: The clinical stages of SCLC were cIA in 75.5%, cIB in 18.4%, and cIIA in 6.1% of patients. A preoperative histologic diagnosis was made in 65.3% of patients. Lobectomy and systematic lymph node dissection were performed in 77.6% and 83.7% of patients, respectively. The pathological stages were pI in 67.3%, pII in 24.5%, pIII in 4.1%, and pIV in 4.1% of patients. The concordance rate between clinical and pathological stages was 44.9%, and the upstaging rate was 49.0%. The 5-year overall survival (OS) rate was 67.8%. No significant difference in OS was found between stages pI and pII. However, the OS for stages pIII/IV was significantly worse than for stages pI/II (p<0.001). Conclusion: In clinical stage I-IIA SCLC, approximately half of the patients were pathologically upstaged, and OS was favorable after upfront surgery, particularly in pI/II patients. The poor prognosis of pIII/IV patients indicates the necessity of intensive preoperative pathologic mediastinal staging.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3798-3814
/
2022
Social recommendation algorithm can alleviate data sparsity and cold start problems in recommendation system by integrated social information. Among them, matrix-based decomposition algorithms are the most widely used and studied. Such algorithms use dot product operations to calculate the similarity between users and items, which ignores user's potential preferences, reduces algorithms' recommendation accuracy. This deficiency can be avoided by a metric learning-based social recommendation algorithm, which learns the distance between user embedding vectors and item embedding vectors instead of vector dot-product operations. However, previous works provide no theoretical explanation for its plausibility. Moreover, most works focus on the indirect impact of social friends on user's preferences, ignoring the direct impact on user's rating preferences, which is the influence of user rating preferences. To solve these problems, this study proposes a user bias drift social recommendation algorithm based on metric learning (BDML). The main work of this paper is as follows: (1) the process of introducing metric learning in the social recommendation scenario is introduced in the form of equations, and explained the reason why metric learning can replace the click operation; (2) a new user bias is constructed to simultaneously model the impact of social relationships on user's ratings preferences and user's preferences; Experimental results on two datasets show that the BDML algorithm proposed in this study has better recommendation accuracy compared with other comparison algorithms, and will be able to guarantee the recommendation effect in a more sparse dataset.
Importance: Over the past decade, catfish farming has increased in Southeast Asia. However, there has been no existing for pharmacokinetic data in the hybrid catfish (Clarias macrocephalus x C. gariepinus). Objective: This study was designed to evaluate the pharmacokinetic characteristics of oxytetracycline (OTC) in the hybrid catfish, following single intravascular (IV) or oral (PO) administration at a single dosage of 50 mg/kg body weight (BW). Methods: In total, 140 catfish (each about 100-120 g BW) were divided into two groups (n = 70). Blood samples (0.6-0.8 mL) were collected from ventral caudal vein at pre-assigned times up to 144 h (sparse samples design). OTC plasma concentrations were analyzed using high-performance liquid chromatography-photodiode array detector. Results: The pharmacokinetic parameter of OTC was evaluated using a non-compartment model. OTC plasma concentrations were detectable for up to 144 and 120 h after IV and PO, respectively. The elimination half-life value of OTC was long with slow clearance after IV administration in hybrid catfish. The average maximum concentration value of OTC was 2.72 ㎍/mL with a time at the maximum concentration of 8 h. The absolute PO bioavailability was low (2.47%). Conclusions and Relevance: These results showed that PO administration of OTC at a dosage of 50 mg/kg BW was unlikely to be effective for clinical use in catfish. The pharmacodynamic properties and clinical efficacy of OTC after multiple medicated feed are warranted.
Air pollution data in South Korea is provided on a real-time basis by Air Korea stations since 2005. Previous studies have shown the feasibility of gridding air pollution data, but they were confined to a few cities. This paper examines the creation of nationwide gridded maps for PM10 concentration using 333 Air Korea stations with variogram optimization and ordinary kriging. The accuracy of the spatial interpolation was evaluated by various sampling schemes to avoid a too dense or too sparse distribution of the validation points. Using the 114,745 matchups, a four-round blind test was conducted by extracting random validation points for every 365 days in 2019. The overall accuracy was stably high with the MAE of 5.697 ㎍/m3 and the CC of 0.947. Approximately 1,500 cases for high PM10 concentration also showed a result with the MAE of about 12 ㎍/m3 and the CC over 0.87, which means that the proposed method was effective and applicable to various situations. The gridded maps for daily PM10 concentration at the resolution of 0.05° also showed a reasonable spatial distribution, which can be used as an input variable for a gridded prediction of tomorrow's PM10 concentration.
Lee, Seung Hwan;Kim, Heong Cheul;Lim, Dajeong;Dang, Chang Gwan;Cho, Yong Min;Kim, Si Dong;Lee, Hak Kyo;Lee, Jun Heon;Yang, Boh Suk;Oh, Sung Jong;Hong, Seong Koo;Chang, Won Kyung
Korean Journal of Agricultural Science
/
v.39
no.3
/
pp.357-364
/
2012
Genomic breeding value (GEBV) has recently become available in the beef cattle industry. Genomic selection methods are exceptionally valuable for selecting traits, such as marbling, that are difficult to measure until later in life. One method to utilize information from sparse marker panels is the Bayesian model selection method with RJMCMC. The accuracy of prediction varies between a multiple SNP model with RJMCMC (0.47 to 0.73) and a least squares method (0.11 to 0.41) when using SNP information, while the accuracy of prediction increases in the multiple SNP (0.56 to 0.90) and least square methods (0.21 to 0.63) when including a polygenic effect. In the multiple SNP model with RJMCMC model selection method, the accuracy ($r^2$) of GEBV for marbling predicted based only on SNP effects was 0.47, while the $r^2$ of GEBV predicted by SNP plus polygenic effect was 0.56. The accuracies of GEBV predicted using only SNP information were 0.62, 0.68 and 0.73 for CWT, EMA and BF, respectively. However, when polygenic effects were included, the accuracies of GEBV were increased to 0.89, 0.90 and 0.89 for CWT, EMA and BF, respectively. Our data demonstrate that SNP information alone is missing genetic variation information that contributes to phenotypes for carcass traits, and that polygenic effects compensate genetic variation that whole genome SNP data do not explain. Overall, the multiple SNP model with the RJMCMC model selection method provides a better prediction of GEBV than does the least squares method (single marker regression).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.