• Title/Summary/Keyword: Sparse Network

Search Result 135, Processing Time 0.029 seconds

Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition (객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크)

  • Kim, Jeong-Hun;Choi, Jong-Hyeok;Park, Young-Ho;Nasridinov, Aziz
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

A study of user's anomalous behavior analysis using Bayesian Network and integrated audit data (베이지안 네트워크와 통합 감사 자료를 이용한 사용자의 비정상행위 탐지에 관한 연구)

  • 정일안;노봉남
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.269-272
    • /
    • 2001
  • 본 논문에서는 베이지안 네트워크와 통합 감사자료를 이용하여 시스템 사용자에 대한 비정상행위를 탐지하고 분석하는데 효과적인 모델을 제안하고자 한다. 이를 위해 리눅스 시스템에서의 여러 가지 감사자료들을 통합한 감사자료로부터 사용자의 행위에 대해 베이지안 네트워크로 구성하고자 한다. 베이지안 네트워크를 구성할 때 효율적인 학습이 가능한 Sparse Candidate 알고리즘을 적용하고, 감사자료의 일부가 결여되어 있는 경우에도 추론이 가능하도록 MCMC(Markov Chain Monte Carlo)의 일종인 Gibbs Sampling 방법을 적용한다.

  • PDF

Evolving Neural Network for Realtime Learning Control (실시간 학습 제어를 위한 진화신경망)

  • 손호영;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.531-531
    • /
    • 2000
  • The challenge is to control unstable nonlinear dynamic systems using only sparse feedback from the environment concerning its performance. The design of such controllers can be achieved by evolving neural networks. An evolutionary approach to train neural networks in realtime is proposed. Evolutionary strategies adapt the weights of neural networks and the threshold values of neuron's synapses. The proposed method has been successfully implemented for pole balancing problem.

  • PDF

TeT: Distributed Tera-Scale Tensor Generator (분산 테라스케일 텐서 생성기)

  • Jeon, ByungSoo;Lee, JungWoo;Kang, U
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.910-918
    • /
    • 2016
  • A tensor is a multi-dimensional array that represents many data such as (user, user, time) in the social network system. A tensor generator is an important tool for multi-dimensional data mining research with various applications including simulation, multi-dimensional data modeling/understanding, and sampling/extrapolation. However, existing tensor generators cannot generate sparse tensors like real-world tensors that obey power law. In addition, they have limitations such as tensor sizes that can be processed and additional time required to upload generated tensor to distributed systems for further analysis. In this study, we propose TeT, a distributed tera-scale tensor generator to solve these problems. TeT generates sparse random tensor as well as sparse R-MAT and Kronecker tensor without any limitation on tensor sizes. In addition, a TeT-generated tensor is immediately ready for further tensor analysis on the same distributed system. The careful design of TeT facilitates nearly linear scalability on the number of machines.

An Efficient Converter Placement in Wavelength-Routed WDM Networks with Sparse-Partial-Limited Wavelength Conversion (파장분할다중화 광통신망에서 산재-부분-제한영역 파장 변환기의 효율적인 배치 알고리듬)

  • Jeong, Han-You;Seo, Seung-Woo;Choi, Yoon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1596-1606
    • /
    • 2010
  • In this paper, we present a new analytical model that can precisely estimate the blocking performance of wavelength-routed WDM networks with sparse-partial-limited wavelength conversion (SPLWC). The proposed model accounts for the two sources of call blocking in a wavelength converter: range blocking originated from the limited conversion range of a wavelength converter; and capacity blocking induced from the limited number of wavelength converters. Based on the proposed model, we also present a new converter placement algorithm that minimizes the amount of wavelength conversion capability, while satisfying the given constraint on the network-wide blocking probability. From the numerical results obtained from the EON, we demonstrate that the blocking probability of the analytical model closely matches with that of the simulation. We also show that, by efficiently combining the existing sparse, partial, and limited wavelength conversion, the SPL WC can achieve the required blocking performance with the least amount of wavelength conversion cost.

Study on Tag, Trust and Probability Matrix Factorization Based Social Network Recommendation

  • Liu, Zhigang;Zhong, Haidong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2082-2102
    • /
    • 2018
  • In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

Efficient Parallel Visualization of Large-scale Finite Element Analysis Data in Distributed Parallel Computing Environment (분산 병렬 계산환경에 적합한 초대형 유한요소 해석 결과의 효율적 병렬 가시화)

  • Kim, Chang-Sik;Song, You-Me;Kim, Ki-Ook;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.38-45
    • /
    • 2004
  • In this paper, a parallel visualization algorithm is proposed for efficient visualization of the massive data generated from large-scale parallel finite element analysis through investigating the characteristics of parallel rendering methods. The proposed parallel visualization algorithm is designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis by using the sort-last-sparse approach. In the proposed algorithm, the binary tree communication pattern is utilized to reduce the network communication time in image composition routine. Several benchmarking tests are carried out by using the developed in-house software, and the performance of the proposed algorithm is investigated.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

A Rendezvous Router Decision Algorithm Considering Routing Table Size (라우팅 테이블의 크기를 고려한 랑데부 라우터 선정 알고리즘)

  • Cho, Kee-Seong;Jang, Hee-Seon;Kim, Dong-Whee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.905-912
    • /
    • 2006
  • Depending on the location of the rendezvous point (RP), the network efficiency is determined in the core based tree (CBT) or protocol independent multicast-sparse mode (PIM-5M) multicasting protocol to provide the multicast services based on the shared tree. In this paper, a new algorithm to allocate the RP using the estimated values of the total cost and the size(number of entries) of the routing tables is proposed for efficiently controlling the cost and the number of routing table entries. The numerical results show that the proposed algorithm reduces the total cost in 5.37%, and the size of routing tables in 13.35% as compared to the previous algorithm.