• Title/Summary/Keyword: Sparse Network

Search Result 137, Processing Time 0.022 seconds

Rice Yield Estimation of South Korea from Year 2003-2016 Using Stacked Sparse AutoEncoder (SSAE 알고리즘을 통한 2003-2016년 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Lee, Kyungdo;Choi, Ki-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.631-640
    • /
    • 2017
  • The estimation of rice yield affects the income of farmers as well as the fields related to agriculture. Moreover, it has an important effect on the government's policy making including the control of supply demand and the price estimation. Thus, it is necessary to build the crop yield estimation model and from the past, many studies utilizing empirical statistical models or artificial neural network algorithms have been conducted through climatic and satellite data. Presently, scientists have achieved successful results with deep learning algorithms in the field of pattern recognition, computer vision, speech recognition, etc. Among deep learning algorithms, the SSAE (Stacked Sparse AutoEncoder) algorithm has been confirmed to be applicable in the field of forecasting through time series data and in this study, SSAE was utilized to estimate the rice yield in South Korea. The climatic and satellite data were used as the input variables and different types of input data were constructed according to the period of rice growth in South Korea. As a result, the combination of the satellite data from May to September and the climatic data using the 16 day average value showed the best performance with showing average annual %RMSE (percent Root Mean Square Error) and region %RMSE of 7.43% and 7.16% that the applicability of the SSAE algorithm could be proved in the field of rice yield estimation.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.

Analysis of Drought Detection and Propagation Using Satellite Data (인공위성 영상 정보를 이용한 가뭄상황 및 징후분석)

  • Shin, Sha-Chul;Eoh, Min-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.61-69
    • /
    • 2004
  • Drought is one of the mai or environmental disasters. Weather data, particularity rainfall, are currently the primary source of information widely used for drought monitoring. However, weather data are often from a very sparse meteorological network. Therefore, data obtained from the Advanced Very High Resolution Radiometer(AVHRR) sensor boarded on the NOAA polar-orbiting satellites have been studied as a tool for drought monitoring. The normalized difference vegetation index(NDVI) and vegetation condition index(VCI) were used in this study. Also, a simple method to detect drought Is Proposed based on climatic water balance using NOAA/AVHRR data. The results clearly show that temporal and spatial characteristics of drought in Korea can be detected and mapped by the moisture index.

An Adaptable Destination-Based Dissemination Algorithm Using a Publish/Subscribe Model in Vehicular Networks

  • Morales, Mildred Madai Caballeros;Haw, Rim;Cho, Eung-Jun;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-242
    • /
    • 2012
  • Vehicular Ad Hoc Networks (VANETs) are highly dynamic and unstable due to the heterogeneous nature of the communications, intermittent links, high mobility and constant changes in network topology. Currently, some of the most important challenges of VANETs are the scalability problem, congestion, unnecessary duplication of data, low delivery rate, communication delay and temporary fragmentation. Many recent studies have focused on a hybrid mechanism to disseminate information implementing the store and forward technique in sparse vehicular networks, as well as clustering techniques to avoid the scalability problem in dense vehicular networks. However, the selection of intermediate nodes in the store and forward technique, the stability of the clusters and the unnecessary duplication of data remain as central challenges. Therefore, we propose an adaptable destination-based dissemination algorithm (DBDA) using the publish/subscribe model. DBDA considers the destination of the vehicles as an important parameter to form the clusters and select the intermediate nodes, contrary to other proposed solutions. Additionally, DBDA implements a publish/subscribe model. This model provides a context-aware service to select the intermediate nodes according to the importance of the message, destination, current location and speed of the vehicles; as a result, it avoids delay, congestion, unnecessary duplications and low delivery rate.

Improvement of Bandwidth Efficiency for High Transmission Capacity of Contents Streaming Data using Compressive Sensing Technique (컨텐츠 스트리밍 데이터의 전송효율 증대를 위한 압축센싱기반 전송채널 대역폭 절감기술 연구)

  • Jung, Eui-Suk;Lee, Yong-Tae;Han, Sang-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2141-2145
    • /
    • 2015
  • A new broadcasting signal transmission, which can save its channel bandwidth using compressive sensing(CS), is proposed in this paper. A new compression technique, which uses two dimensional discrete wavelet transform technique, is proposed to get high sparsity of multimedia image. A L1 minimization technique based on orthogonal matching pursuit is also introduced in order to reconstruct the compressed multimedia image. The CS enables us to save the channel bandwidth of wired and wireless broadcasting signal because various transmitted data are compressed using it. A $256{\times}256$ gray-scale image with compression rato of 20 %, which is sampled by 10 Gs/s, was transmitted to an optical receiver through 20-km optical transmission and then was reconstructed successfully using L1 minimization (bit error rate of $10^{-12}$ at the received optical power of -12.2 dB).

Application of Normalized Difference Vegetation Index for Drought Detection in Korea (우리 나라에서의 가뭄 발생 지역 판별을 위한 식생지수(NDVI)의 적용성에 관한 연구)

  • Shin, Sha-Chul;Kim, Chul-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.839-849
    • /
    • 2003
  • Drought is one of the major environmental disasters. Weather data, particularity rainfall, are currently the primary source of information widely used for drought monitoring. However, weather data are often from a very sparse meteorological network, incomplete and/or not always available in good time to enable relatively accurate and timely drought detection. Data from remote sensing platforms can be used to complements weather data in drought. Therefore, data obtained from the Advanced Very High Resolution Radiometer(AVHRR) sensor on board the NOAA polar-orbiting satellites have been studied as a tool for drought monitoring. The normalized difference vegetation index(NDVI)-based vegetation condition index(VCI) were used in this study These indices showed their excellent ability to detect vegetation stress due to drought. The results clearly show that temporal and spatial characteristics of drought in Korea can be detected and mapped by the VCI index.

Mobility-Aware Ad Hoc Routing Protocols for Networking Mobile Robot Teams

  • Das, Saumitra M.;Hu, Y. Charlie;Lee, C.S. George;Lu, Yung-Hsiang
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.296-311
    • /
    • 2007
  • Mobile multi-robot teams are useful in many critical applications such as search and rescue. Explicit communication among robots in such mobile multi-robot teams is useful for the coordination of such teams as well as exchanging data. Since many applications for mobile robots involve scenarios in which communication infrastructure may be damaged or unavailable, mobile robot teams frequently need to communicate with each other via ad hoc networking. In such scenarios, low-overhead and energy-efficient routing protocols for delivering messages among robots are a key requirement. Two important primitives for communication are essential for enabling a wide variety of mobile robot applications. First, unicast communication (between two robots) needs to be provided to enable coordination and data exchange. Second, in many applications, group communication is required for flexible control, organization, and management of the mobile robots. Multicast provides a bandwidth-efficient communication method between a source and a group of robots. In this paper, we first propose and evaluate two unicast routing protocols tailored for use in ad hoc networks formed by mobile multi-robot teams: Mobile robot distance vector (MRDV) and mobile robot source routing (MRSR). Both protocols exploit the unique mobility characteristics of mobile robot networks to perform efficient routing. Our simulation study show that both MRDV and MRSR incur lower overhead while operating in mobile robot networks when compared to traditional mobile ad hoc network routing protocols such as DSR and AODV. We then propose and evaluate an efficient multicast protocol mobile robot mesh multicast (MRMM) for deployment in mobile robot networks. MRMM exploits the fact that mobile robots know what velocity they are instructed to move at and for what distance in building a long lifetime sparse mesh for group communication that is more efficient. Our results show that MRMM provides an efficient group communication mechanism that can potentially be used in many mobile robot application scenarios.

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar II. 2-D Quantitative Rainfall Estimation Using Cokriging (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 II. Cokriging을 이용한 2차원 정량강우 산정)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Gwang-Seob;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.335-346
    • /
    • 2006
  • Among various input data to hydrologic models, rainfall measurements arguably have the most critical influence on the performance of hydrologic model. Traditionally, hydrologic models have relied on point gauge measurements to provide the area-averaged rainfall information. However, rainfall estimates from gauges become inadequate due to their poor representation of areal rainfall, especially in situations with sparse gauge network. Alternatively, radar that covers much larger areas has become an attractive instrument for providing area- averaged precipitation information. Despite of the limitation of the QPE(Quantitative Precipitation Estimation) using radar, we can get the better information of spatial variability of rainfall fields. Also, rain-gauges give us the better quantitative information of rainfall field. Therefore, in this study, we developed improved methodologies tu estimate rainfall fields using an ordinary cokriging technique which optimally merges radar reflectivity data into rain-gauges data.