• Title/Summary/Keyword: SparkR

Search Result 79, Processing Time 0.029 seconds

A STUDY ON THE EXPLOSION SAFETY ASSESSMENT OF HYDROCARBON REFRIGERANT REFRIGERATOR

  • Oh, Kyu-Hyung;Kim, Min-Kyu;Chu, Euy-Sung;Lim, Byung-Han;Kim, Man-Hoe;Park, Yoon-Ser
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.289-296
    • /
    • 1997
  • This paper discribes an experimental explosion risk assessment study on refrigerators containing flammable hydrocarbon refrigerant. A refrigerator used in this study is a larder fridge type, 215 liter in volume. The hydrocarbon refrigerant used in the refrigerator is iso-butane(C$_4$H$_{10}$). For the explosion safety assessment of the refrigerator, temperature of compressor, cooling air circulation fan motor, defrost heater and inner lamp were measured during the operation. And to confirm the ignitablity of flammable gas by the electric spark of the switches of the refrigerator, ON-OFF test of all switches were conducted with compulsorily near the stoichiometric concentration atmosphere of iso-butane-air mixture. As the result of experiment above mentioned and another experiment for the explosion safety assessment, we can conclude that explosion hazard in connection with the use of hydrocarbon refrigerant was few.w.

  • PDF

Development of Discharge Electrode for Machining Connector Mold applying MIM Process (MIM 공법 적용 커넥터 금형 가공용 방전 전극 개발)

  • Shin, Kwang-Ho;Jeon, Yong-Jun;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.37-40
    • /
    • 2014
  • A discharge electrode plays a role of shaving off workpiece with spark generated by current in discharge machining. Accordingly, for the discharge electrode, an electrode with excellent wear resistance is necessary. Generally, Graphite and Cu are used as the materials of the electrode, and recently Cu-W is mainly used as an electrode with excellent wear resistance. However, the form of the electrode generally used is produced mostly using cutting work, so a lot of costs incur if several similar forms are needed. Thus, this study developed a Cu-W electrode using Metal Injection Molding (MIM) process to produce similar forms with excellent productivity and a great quantity of electrodes in a similar form in discharge machining and carried out a discharge machining test. In developing an electrode applying MIM, predicting contraction of a product in a sintering process, a mold expansion ratio of 1.29486 was given, but the actual product showed a percentage of contraction 24% to 32%, which showed a difference of 3% to 5%. In addition, to verify wear resistance of the discharge electrode, abrasion loss was measured after the discharge.

  • PDF

Study on Ultra-Precision Grinding Condition of WC-Co (금형용 WC-Co의 초정밀 연삭 가공 조건에 관한 연구)

  • S.J. Heo;J.H. Kang;W.I. KIm
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • Recently, WC-Co have some excellent properities as the material for the mechanical component such as metallic moulding parts, ball dies parts, and punch parts. This paper describes the surface roughness and grinding force caused by experimental study on the surface grinding of WC-Co with ultra-precision like a mirror shape using diamond wheel. Also, some investigations are carried out using WA grinding wheel to increase improved ground surface roughness such as polishing, lapping effect. Some important results obtained here are summarized as follow. 1) Within this experimental grinding condition, we can be obtained $R_{max}.\;2\mu\textrm{m}\;R_a\;0.3\mu\textrm{m}$ whichare the most favourable ground surface roughness using #140 diamond wheel, and improved surface roughness values about 20 .approx. 25% throughout 5 times sparkout grinding 2) The value of surface roughness is Rmax. $0.49\mu\textrm{m},\;R_a\;0.06\mu\textrm{m}$ using #600 diamond wheel. 3) The area of no rack zone is less than $F_{n}$ 0.27N/mm, Ft 0.009N/mm

  • PDF

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

Fabrication and Mechanical Property of Fe-20Cu-1C Compacts by SPS process with Different Heating Rate (방전플라즈마소결법 적용 승온속도 변화에 따라 제조된 Fe-20Cu-1C 소결체 제조 및 특성평가)

  • Ryu, Jung-Han;Shin, Soo-Sik;Ryu, Byung-Rok;Kim, Kyung-Sik;Jang, Jun-Ho;Oh, Ik-Hyun;Kim, Kap-Tae;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.302-307
    • /
    • 2017
  • In this study, Fe-Cu-C alloy is sintered by spark plasma sintering (SPS). The sintering conditions are 60 MPa pressure with heating rates of 30, 60 and $9^{\circ}C/min$ to determine the influence of heating rate on the mechanical and microstructure properties of the sintered alloys. The microstructure and mechanical properties of the sintered Fe-Cu-C alloy is investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The temperature of shrinkage displacement is changed at $450^{\circ}C$ with heating rates 30, 60, and $90^{\circ}C/min$. The temperature of the shrinkage displacement is finished at $650^{\circ}C$ when heating rate $30^{\circ}C/min$, at $700^{\circ}C$ when heating rate $60^{\circ}C/min$ and at $800^{\circ}C$ when heating rate $90^{\circ}C/min$. For the sintered alloy at heating rates of 30, 60, and $90^{\circ}C/min$, the apparent porosity is calculated to be 3.7%, 5.2%, and 7.7%, respectively. The hardness of the sintered alloys is investigated using Rockwell hardness measurements. The objective of this study is to investigate the densification behavior, porosity, and mechanical properties of the sintered Fe-Cu-C alloys depending on the heating rate.

Characteristics of Stainless Steel Composites with Nano-sized TiCxNy (Nano-sized TiCxNy를 함유한 STS 복합체의 특성)

  • Ban, Tae-Ho;Park, Sung-Bum;Jo, Soo-Jeong;Lee, Dong-Won;Turaev, Farkhod R.;Park, Yong-Il;Kim, Sung-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.290-296
    • /
    • 2011
  • Titanium carbonitride is more perspective materials compared to titanium carbide. It can be used in tool industry and special products because of its higher strength, abrasive wear-resistance and especially its strong chemical stability at high temperatures. We produced STS+TiCxNy composite by the spark plasma sintering for higher strength and studied the characteristics. The planar and cross-sectional microstructures of the specimens were observed by scanning electron microscopy. Characterizations of the carbon and nitride phases on the surface of composite were carried out using an X-ray diffractometer. During annealing TiCxNy particles diffusion into STS 430 was observed. After annealing, sintering isolations between particles were formed. It causes decreasing of mechanical strength. In addition when annealing temperature was increased hardness increased. Heterogeneous distribution of alloying elements particles was observed. After annealing composites, highest value of hardness was 738.1 MHV.

A Study on the Flame Behavior of Substitute Fuel of Gasoline Engine (가솔린엔진용 대체연료의 화염거동에 관한 연구)

  • Yang, Jeong-Gyu;Ryu, Jeong-In
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 1985
  • The Purpose of this study are to investigate the characteristics of the flame behavior of gasoline-methanol blended fuels in spark ignition engine. Ionization probe were installed at the cylinder head and piston in order to measure flame speed. Other parameter such as engine performance, fuel consumption rate and exhaust gas were measured. The results were as follows. 1. In the case of increase methanol contents in blend fuel, flame propagation speed were increased, and thermal efficiency of the engine were increased due to decrease of energy consumption rate. 2. In the case of fixed equivalance ratio, NO sub(X) in exhaust gas were increased in accordance with increase of spark advance, and mean effective pressure were decreased in accordance with increase of methanol contents. 3. CO and HC concentration were decreased in accordance with increase of methanol contents.

  • PDF

EFFECT OF OVER-EXPANSION CYCLE IN A SPARK-IGNITION ENGINE USING LATE-CLOSING OF INTAKE VALVE AND ITS THERMODYNAMIC CONSIDERATION OF THE MECHANISM

  • Shiga, S.;Hirooka, Y.;Miyashita, Y.;Yagi, S.;Machacon, H.T.C.;Karasawa, T.;Nakamura, H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents further investigation into the effect of over-expansion cycle in a spark-ignition engine. On the basis of the results obtained in previous studies, several combinations of late-closing (LC) of intake valve and expansion ratio were tested using a single-cylinder production engine. A large volume of intake capacity was inserted into the intake manifold to simulate multi-cylinder engines. With the large capacity volume, LC can decrease the pumping loss and then increase the mechanical efficiency. Increasing the expansion ratio from 11 to 23.9 with LC application can produce about 13% improvement of thermal efficiency which was suggested to be caused by the increased cycle efficiency. The decrease of compression ratio from 11 to 5.5 gives little effect on the thermal efficiency if the expansion ratio could be kept constant. Thus, the expansion ratio is revealed to be a determining factor for cycle efficiency, while compression ratio is no more important, which suggests the usefulness of controlling the intake charge with intake valve closure timing. These were successfully explained by simple thermodynamic calculation and thus the mechanism could be verified by the estimation.

  • PDF

Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling (고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성)

  • Yim, Da-Mi;Park, Jong Kwan;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.