• Title/Summary/Keyword: Spark Problem

Search Result 54, Processing Time 0.028 seconds

SPARK: A Smart Parametric Online RWA Algorithm

  • Palmieri, Francesco;Fiore, Ugo;Ricciardi, Sergio
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.368-376
    • /
    • 2007
  • The large potential bandwidth available in wavelength-division multiplexed optical networks makes this technology of crucial importance for satisfying the ever increasing capacity requirements of the next-generation Internet. In this scenario, the routing and wavelength assignment(RWA) problem that concerns determining the optical paths and wavelengths to be used for connection establishment in a wavelength-routed network, is still one of the most important open issues. In this paper we propose a new online dynamic grooming-capable RWA heuristic scheme working on wavelength division multiplexing(WDM) networks as a multistage selection process. The proposed algorithm is transparent with respect to the presence of wavelength converters, achieves very low connection rejection ratios with minimal computational complexity and is appropriate for the modern multilayer optical circuit and wavelength switched networks with sparse wavelength conversion capability.

Improvement of Geometric Accuracy using Powder Mixed Electro-chemical Discharge Machining Process (전해액 내 혼합된 미세 전도성 입자를 이용한 전해 방전 가공의 형상 정밀도 향상)

  • Han M.S.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.366-369
    • /
    • 2005
  • Electrochemical discharge machining (ECDM) has been found to be potential fur the micro-machining of non-conductive materials such as ceramics or glass. However this machining process has its own inherent problem that the reproducibility is too low to get the available geometric accuracy fur micromachining applications. One main challenge in reaching this goal is the control of the hydrogen built around the tool-electrode in which happen the discharges. This paper proposes the methods to improve the geometric accuracy using powder-mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy by averaging and decreasing the concentration of spark energy.

  • PDF

A Two-Stage Scheduling Approach on Hybrid Flow Shop with Dedicated Machine (전용기계가 있는 혼합흐름공정의 생산 일정 계획 수립을 위한 2단계 접근법)

  • Kim, Sang-Rae;Kang, Jun-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.823-835
    • /
    • 2019
  • Purpose: This study deals with a production planning and scheduling problem to minimize the total weighted tardiness on hybrid flow shop with sets of non-identical parallel machines on stages, where parallel machines in the set are dedicated to perform specific subsets of jobs and sequence-dependent setup times are also considered. Methods: A two-stage approach, that applies MILP model in the 1st stage and dispatching rules in the 2nd stage, is proposed in this paper. The MILP model is used to assign jobs to a specific machine in order to equalize the workload of the machines at each stage, while new dispatching rules are proposed and applied to sequence jobs in the queue at each stage. Results: The proposed two-stage approach was implemented by using a commercial MILP solver and a commercial simulation software and a case study was developed based on the spark plug manufacturing process, which is an automotive component, and verified using the company's actual production history. The computational experiment shows that it can reduce the tardiness when used in conjunction with the dispatching rule. Conclusion: This proposed two-stage approach can be used for HFS systems with dedicated machines, which can be evaluated in terms of tardiness and makespan. The method is expected to be used for the aggregated production planning or shop floor-level production scheduling.

Two-dimensional $O_2$ and OH Density Measurement Using Tunable KrF Excimer Laser Light a Combustion Bomb via Planar Laser Induced Predissociative Fluorescence and Laser Rayleigh Scattering (평면 선해리 레이저유도 형광법과 레이래이 분산법을 이용한 연소실내의 OH 및 $O_2$의 2차원적 농도측정)

  • 김경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.91-99
    • /
    • 1994
  • Tunable KrF Excimer Laser is used here for measuring OH and $O_2$ density distribustion in an open $H_2$/air premixed flame and in a combustion bomb. Laser Rayleigh Scattering(LRS) and Planar Laser Induced Predissociative Fluorescence(PLIPF) methods are used to obtain two-dimensional images of total and specific densities. Laser Excitation wavelengths are calibrated via flame images and combustion bomb images show good qualitative a greement with theoretical calculation. Furthermore images in a combustion bomb can be developed to study real Spark-Ignition engine combustions. Our experimental images show that there are no more collisional quenching problem at high pressure environment(including atmospheric pressure) using predissociative fluorescence technique. Further development to obtain two-dimensional temperature dustribution is ready to use eventhough it is not reported in this paper.

  • PDF

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

The Effect of Multi-ignition Strategy on the Combustion and Emission Characteristics in a Ultra Lean Burn GDI Engine (초희박 GDI엔진에서 다단점화에 의한 연소 및 배기 특성)

  • Park, Cheol-Woong;Kim, Sung-Dae;Kim, Hong-Suk;Oh, Hee-Chang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.106-112
    • /
    • 2012
  • Since air pollution problem by emissions from automotive vehicles has become social issues, lean-burn gasoline direct injection (GDI) engine is focused as an alternative to meet the requirement of reinforced emission regulation and improved fuel consumption. Spray-guided type DI combustion is promising technology, which characterized by the centrally mounted injector and closely positioned spark plug, since stable lean combustion can be realized even at ultra-lean mixture condition. In the present study, the effect of multi-ignition with developed charge coil on combustion and emission characteristics was investigated in optical accessible single cylinder engine. In order to fully understand the in-cylinder phenomena and the mechanisms of emission production, optical diagnostics, such as flame visualization was also carried out at frequently using operating condition. Multi-ignition is effective to improve fuel economy but increase NOx emission at flammability limit.

Study on the Estimation of Knock Position in a LPG Engine with Ion-probe Head Gasket (LPG엔진에서 이온프로브를 이용한 노킹 발생 위치 추정에 관한 연구)

  • Lee, Joung-Won;Choi, Hoi-Myung;Cho, Hoon;Hwang, Seung-Hwan;Min, Kyoung-doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • LPG has been a broad concern of pro-environmental alternative fuel for vehicles. Recently, the new Liquid Phase LPG Injection(LPLI) system extends the limit of power of LPG engine and gives a chance to substitute LPG engine for diesel engine of heavy duty vehicles that are the main resources of air pollution in urban area. Large bore size of heavy duty LPG engine derives a serious knock problem. To find an optimal MBT conditions, it is necessary to know how the flame develops in the combustion chamber and find where the knock positions are. In this study. the ion-probe head gasket was used to estimate the knock position. Inverse operation of the ion-probe signal provides the flame developing characteristics. The further the position is from the spark plug, the later the flame arrives and the more times knock occurs. The main factor that effects knock position is inferred a flor situation of mixed gas in the combustion chamber.