• 제목/요약/키워드: Spark Plug

검색결과 114건 처리시간 0.021초

SI 기관에서 초기 화염의 생성 및 성장에 대한 모델링 (A Modeling of Flame Initiation and Its Development in SI Engines)

  • 송정훈;선우명호
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.288-298
    • /
    • 1999
  • In spark ignited engines, the electrical spark not only sets the time for the onset of combustion but also is able to greatly influence the character of the initial flame growth and the subsequent combustion, and thereby can influence engine performance. The relative importance of the ignition energy is particularly high under lean or high residual gas or exhaust gas recirculation (EGR). In this study, a modeling of flame Initiation and its development is proposed. Submodels consist in representing of cylinder pressure and temperature, heat transfer to cylinder wall, and flame kernel heat transfer to ambient air and to spark plug electrodes. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy, and laminar and turbulent flame velocity.

플라즈마 제트 플러그의 형상이 정적연소기내 연소특성에 미치는 영향 (Effect of the Configuration of Plasma Jet Plug on Combustion Characteristics in a Constant Volume Vessel)

  • 김문헌;유호선;오병진;박정서
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.593-602
    • /
    • 1999
  • This paper presents combustion characteristics of LPG-air mixture ignited by the plasma jet in a cylindrical vessel with constant volume, in which our focus is placed on the multi-hole plug configuration. Four types of the plug configuration depending on the number of orifice and the arranged angle are considered, along with two cases of conventional spark ignition for comparison. Not only the flame propagation is photographed at intervals, but the pressure in the combustion chamber is also recorded through the entire combustion process. The results show that the plasma jet ignition enhances the overall combustion rate remarkably in comparison to the spark ignition by generating irregular flame front and penetrating through the unburned mixture. The combustion enhancement rate agrees favorably with the available data, which supports the validity of our experiment. Synthetically estimating, the two-hole sixty-degree plug appears to be the most desirable, in that the maximum pressure as well as the combustion duration is less affected by the sub-energy level than the others. It is also deduced that there may exist an optimal plug configuration capable of rapid combustion for a specific combustion chamber.

가솔린엔진에서의 2차원 화염 가시화 (2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine)

  • 배충식
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구 (Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor)

  • 진유인;유경원;민성기;김홍집
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

스파크플러그 주위의 HC 농도 측정 및 연소특성 분석 (Measurement of HC Concentration near Spark Plug and Combustion Analysis)

  • 조한승;송해박;이종화;이귀영
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.212-219
    • /
    • 1998
  • Unburned hydrocarbon is a key contributor to both the fuel economy and emissions of automotive engine. Cyclic variation of HC emission is of importance, especially during throttle transients. The real time measurement of hydrocarbon is particularly important to obtain a better understanding of the mechanisms for combustion and emissions, especially during cold start and throttle transient condition. This paper reports the cycle resolved measurement technique of unburned hydrocarbons to quantify rapid changes of in-cylinder concentration in the vicinity of spark plug by using the Fast Response Flame Ionization Detector(FRFID). While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. In order to understand the rapid change of hydrocarbons with cylinder pressure, it is necessary to study the response time delay of the system, including the time associated with gas transportation to FID. And signal from FRFID is correlated with cylinder pressure data to relate changes in mixture preparation to the classic analysis, such as indicated mean effective(IMEF) and ignition delay, etc.

  • PDF

엔진속도 변화에 따른 연소실내 Spark Plug 주위의 유동특성 고찰 (Characteristics of in-cylinder flow near the spark-plug for different engine speeds)

  • 성백규;전광민
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2289-2297
    • /
    • 1996
  • Flows in the combustion chamber near the spark plug are measured using LDv.A single cylinder DOHC S.I. engine of compression ratio 9.5:1 with a transparent quartz window piston is used. Combustion chamber shape is semi-wedge type. Measured data are analyzed using the ensemble averaged analysis and the cycle resolved analysis which uses FFT Filtering. Turbulent intensity and mean velocity are studied in the main flow direction and the normal to main flow direction as a function of engine speeds. The results shows that the turbulent intensity obtained by the ensemble averaged analysis is greater than that calculated by the cycle resolved analysis. Especially, the ensemble averaged analysis shows increase in turbulence at the end of compression stroke although the cycle resolved analysis shows increase only in the cycle-by-cycle variation with no noticeable increase in turbulence. The mean velocity in the main flow direction increase as engine speed increase. But the mean velocity normal to the main flow does not show such increase. Turbulent intensity in both direction increase in proportion to engine speeds. The magnitude of turbulent intensity is about 0.3 ~ 0.4 times the mean piston speeds at the end of the compression stroke.

희박연소용 점화장치에 대한 기초연구 (A basic study on ignitor for lean burn)

  • 이상준;나성오;이종태
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.36-48
    • /
    • 1997
  • In order to establish the ignition system for lean burn, the influence of the number of spark plug, spark times and spark intervals on discharge pattern of spark energy on ignitability and combustion characteristics were evaluated. It showed that, ignitability remarkably increased with the case of multiple spark ignition system than with the case of single spark and the lean limit extended fuel/air equivalence ratio by 0.1, the increase of magnitude and lasting time of capacity component and inductance component was multi spark discharge in a row.

연소제어 전략 및 분사기 위치 변경에 따른 직접분사식 초희박 LPG 엔진의 연소특성 연구 (A Study on the Combustion Characteristics with Control Strategy and Injector Position Changes in a Lean-burn LPG Direct Injection Engine)

  • 박철웅;박윤서;이용규;오승묵;김태영
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.98-104
    • /
    • 2014
  • The technologies employing spray-guided type combustion system for ultra-lean combustion direct injection engine is focused as a promising technology for satisfying emission regulations and improving fuel economy. In the present study, control and design optimization of lean-burn LPG direct injection engine was carried out with control strategy and injection position changes. Inter-injection spark ignition strategy was applied and the effect of the strategy was assessed at relatively higher load operation condition than previous researches. In order to create richer mixture in the vicinity of spark plug electrode, relative distance between the dead-end of injector and the electrode of spark plug was changed.

LNG 엔진에서 당량비와 점화시기에 따른 엔진의 성능과 배기 특성에 관한 수치 해석적 연구 (Numerical Analysis of Performance and Emission Characteristics according to Equivalence Ratio and Ignition Time of LNG Engine)

  • 이지영;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.49-51
    • /
    • 2015
  • In this research, engine performance and emission variation according to equivalence ratio and ignition time is calculated by validated analysis model. LNG engine ignite by spark plug and spark ignition modeled using DPIK model and G-equation that modeled initial flame surface called kernel and velocity and position of flame front. Engine pressure and emission was validated with experimental data.

  • PDF

흡기중의 수증기분압과 점화시기 및 연료 변화에 따른 스파크 점화기관의 화염 전파 특성 분석 (An Experimental Analysis of the Effects of Water Vapor Partial Pressure in Inlet Air, Spark Advance and Fuel Type on the Flame Propagation in a Spark Ingnition Engine)

  • 이택헌;전광민
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.191-198
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air, spark advance and fuel type in the spark ignition engine were investigated through the experiments of combustion and flame arriving pattern analysis using ionization probe. The results of flame propagation experiment using ionization probe show that the flame which ignited from spark plug located at the center of the combustion chamber propagated faster in exhaust side than in intake side due to the mixture flow motion inducted into combustion chamber from intake tumble port at all conditions. And as the partial vapor pressure increased, the flame propagation became slower in all direction. Especially effects were greater for intake side than the exhaust side.

  • PDF