• Title/Summary/Keyword: Spark Plasma Sintering (SPS)

Search Result 199, Processing Time 0.032 seconds

Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering (Spark plasma sintering에 의한 Ti-6Al-4V 합금분말의 성형성)

  • Kim, J.H.;Lee, J.K.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.32-37
    • /
    • 2007
  • Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and $900^{\circ}C$, respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.

Spark Plasma Sintering and Hot Pressing Sintering of Nanocrystalline WC-$10C_o$-0.8VC

  • Zhu, Li Hui;Shao, Guang Jie;Liu, Yi Xiong;Siddle, Dave
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.894-895
    • /
    • 2006
  • WC-$10C_o$-0.8VC nanocrystalline powders were sintered by spark plasma sintering (SPS) and hot press sintering (HPS), and the microstructure and properties were compared. Results show that dense WC-$10C_o$-0.8VC can be obtained by SPS in several minutes when the sintering temperature is $>1200^{\circ}C$. Sintered at a temperature of $1300^{\circ}C$ the sample prepared by SPS for 3 minutes has higher density, finer grains and better properties than that prepared by HPS for 60 minutes. SPS can be used to prepare nanocrystalline WC-$10C_o$-0.8VC with improved properties when suitable sintering parametesr are chosen.

  • PDF

Densification Behavior of the Oxidation-treated Spherical Fe-powder Compact during Spark-Plasma Sintering Process (산화처리된 구형 Fe 분말 성형제의 방전플라즈마 소결거동에 관한 연구)

  • 권영순;김윤호;김지순;석명진;문진수;김환태
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • Spark-Plasma Sintering(SPS) is one of the new sintering methods which takes advantages both inconventional pressure sintering and electric current sintering. It is known that SPS is very effective for the densification of hard-to-sinter materials like refractory metals, intermetallic compounds, glass and ceramics without grain growth. However, a clear explanation for sintering mechanism and an experimental evidence for the formation of weak plasma during SPS are not given yet. In this study, fundamental study on sintering behavior and mechanism of SPS was investiged. For this study, various spherical Fe powders were prepared such as as-received, as-reduced, and as-oxidized and then sintered by SPS facility. In order to confirm the surface cleaning effect during SPS neck region and fracture surface of sintered body was observed and analyzed by SEM/EPMA. Densification behavior was analyzed from the data of deflection along the pressure axis. Some specimens were additionally produced by Hot Pressing and the results were compared with those of SPS.

  • PDF

Thermoelectric Properties of Rapid Solidified p-type Bi2Te3 Alloy Fabricated by Spark Plasma Sintering(SPS) Process (방전 플라즈마 소결법(SPS)으로 제조된 급속응고 p-type Bi2Te3 합금의 소결 특성)

  • Moon, Chul-Dong;Hong, Soon-Jik;Kim, Do-Hyang;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.494-498
    • /
    • 2010
  • The p-type thermoelectric compounds of $Bi_2Te_3$ based doped with 3wt% Te were fabricated by a combination of rapid solidification and spark plasma sintering (SPS) process. The effect of holding time during spark plasma sintering (SPS) on the microstructure and thermoelectric properties were investigated using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermoelectric properties. The powders as solidified consisted of homogeneous thermoelectric phases. The thermoelectric figure of merit measured to be maximum ($3.41{\times}10^{-3}/K$) at the SPS temperature of $430^{\circ}C$.

Development of $Al_2O_3-Ni$ FGMs Produced by Spark Plasma Sintering

  • Casari, Francesco;Zadra, Mario;Girardini, Luca;Molinari, Alberto
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.87-88
    • /
    • 2006
  • Ceramic-Metal Functionally Graded Materials (FGM) are of great interest for application as Thermal Barrier Coating (TBC) or Wear Resistant Coating (WRC). Spark Plasma Sintering (SPS) is a promising techniques for time-saving consolidation of laminated/graduated powder systems: SPS is a pressure-assisted electrical sintering method which directly applies a pulsed DC current as heat source. In the present work, production of $Al_2O_3-Ni$ FGMs by means of Spark Plasma Sintering is considered; effect of sintering condition on density, hardness and fracture toughness is studied. Problems correlated to this new processing technology are discussed.

  • PDF

Properties of Sr-Ferrites Prepared by Spark Plasma Sintering Process (스파크 플라즈마 소결법으로 제조된 Sr-페라이트의 특성)

  • Roh, J.S.;Oh, M.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • Anisotropic Sr-ferrites were prepared by the spark plasma sintering process (SPS). The Ferrite particles were oriented and densified during sintering process, and the anisotropic ferrites were manufactured at low sintering temperature and a remarkable short time processing by SPS method. It was showed that the anisotropy of ferrite particles at the specimen outer side was more higher than that at the specimen center, and it seems possible that the orientation of ferrite particles was related to DC current. Magnetic and physical properties of sintered Sr-ferrites are Br = 3.15 kG, iHc : 2.67 kOe, and density : 5.033 g/cm$^3$ when the samples were sintered for 8 minutes at 106$0^{\circ}C$.

Fabrication of TiAl Alloys by Mechanical Milling and Spark Plasma Sintering (기계적 분쇄화 및 스파크 플라즈마 소결에 의한 TiAl 합금의 제조)

  • Kim, M.S.;Kim, J.S.;Hwang, S.J.;Hong, Y.H.;Oh, M.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • In the present study, newly developed spark plasma sintering(SPS) technique was introduced to refine the grain size of ${\gamma}$-based TiAl intermetallic compounds. Ti-46Al-1.5Mo and Ti-46Al-1.5Mo-0.2C(at%) prealloyed powders were produced by mechanical milling(MM) in high-energy attritor. The mechanically milled powders were characterized by XRD and SEM for the microstructural evolution as a function of milling time. And then, the MMed powders were sintered by both spark plasma sintering and hot pressing in vacuum (HP). After the sintering process, MM-SPSed specimens were heat-treated in a vacuum furnace (SPS-VHT) and in the SPS equipment(MM-SPS) for microstructural control. It was found from microstrutural observation that the microstructure consisting of equiaxed ${\gamma}$-TiAl with a few hundred nanometer in average size and ${\alpha}_2-Ti_3Al$ particles were formed after both sintering processes. It was also revealed from hardness test and three-point bending test that the effect of grain refinement on the hardness and bending strength is much higher than that of carbon addition. The fully lamellar microstructures, which is less than $80{\mu}m$ in average grain size was obtained by SPS-VHT process, and the fully lamellar microstructure which is less than $100{\mu}m$ in average grain size was obtained by MM-SPS for a relatively shorter heat-treatment time.

TiB2-Cu Interpenetrating Phase Composites Produced by Spark-plasma Sintering

  • Kwon, Young-Soon;V. Dudina, Dina;I. Lomovsky, Oleg;A. Korchagin, Michail;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.168-171
    • /
    • 2003
  • Interpenetrating phase composites of $TiB_2$-Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.

Consolidation Behavior of Gas Atomized Mg-Zn-Y Alloy Powders by Spark Plasma Sintering (Spark Plasma Sintering에 의한 가스분무 Mg-Zn-Y 합금분말의 성형특성)

  • Lee, Jin-Kyu;Kim, Taek-Soo;Bae, Jung-Chan
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.140-144
    • /
    • 2007
  • Using Spark Plasma Sintering process (SPS), consolidation behavior of gas atomized $Mg_{97}Zn_1Y_2$ alloys were investigated via examining the microstructure and evaluating the mechanical properties. In the atomized ahoy powders, fine $Mg_{12}YZn$ particles were homogeneously distributed in the ${\alpha}-Mg$ matrix. The phase distribution was maintained even after SPS at 723 K, although $Mg_{24}Y_5$ particles were newly precipitated by consolidating at 748 K. The density of the consolidated bulk Mg-Zn-Y alloy was $1.86g/cm^3$. The ultimate tensile strength (UTS) and elongation were varied with the consolidation temperature.

The Effect of La-silicon Oxynitride on the Densification of ${Si_3}{N_4}$ Ceramics by Spark Plasma Sintering

  • Cho, Kyeong-Sik;Kim, Sungjin;Beak, Sung-Ho;Park, Heon-Jin;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.687-692
    • /
    • 2001
  • Silicon nitride-La-silicon oxynitride ceramics were fabricated by Spark Plasma Sintering (SPS). The density, crystalline phase and microstructure were compared with those obtained by Hot Pressing (HP). The full density was achieved within 40 min by spark plasma sintering at 1$650^{\circ}C$, whereas the same result was required by hot pressing with a dwell time of 500 min at higher temperature. There were some differences in the microstructure and second phases in the sintered ceramics, which are attributed to the rapid densification in the spark plasma sintering. The fine and acicular grain microstructure appeared in spark plasma sintering.

  • PDF