• 제목/요약/키워드: Spark timing

검색결과 169건 처리시간 0.029초

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

오토 사이클 기관의 열역학 제 2법칙적 성능 해석 (The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law)

  • 김성수;노승탁
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

축분을 이용한 바이오가스 엔진 개발 - 기초설계 및 성능분석 - (A Study on the Development of Bio-gas Engine Using Livestock Manure - Fundamental Design and Experimental Analysis on the Performance -)

  • 백이;김영중;강금춘;유영선;조기현
    • Journal of Biosystems Engineering
    • /
    • 제30권6호통권113호
    • /
    • pp.354-359
    • /
    • 2005
  • This is a fundamental study to develop a bio-gas utilization technology using livestock manure. Especially, this study was carried out to develop an engine using bio-gas. A bio-gas engine was designed and manufactured by modification of a diesel engine of 3 cylinders powering 13.31 kW/2800 rpm, changing the fuel supplying system fit for bio-gas. The result showed that, when the Air/Fuel ratio was controlled with fixed spark timing, the power of biogas-fueled engine is about $10.6{\~}14.6\%$ lower then that of LNG-fueled engine because of low volumetric efficiency. The engine output and torque was $11.85{\~}13.3$ kW, $39.5{\~}40.8\;N{\cdot}m$, respectively at the engine speed of 2600 rpm. Bio-gas consumption rate was 260.20 g/kW/hr, 315.20 g/kW/hr in engine speed or 1000 rpm, 2800 rpm, respectively.

농용 석유기관의 LPG 이용에 관한 연구 (Study on the LP Gas as a Fuel for Farm Kerosene Engine)

  • 조기현;이승규;김성태;김영복
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.189-198
    • /
    • 1997
  • In order to find out the potential of LP gas as a substitute fuel for small fm engine, experiments were carried out with a four-stroke spark-ignition engine which was modified from a kerosene engine mounted on the power tiller. Performance characteristics of kerosene and LP gas engine such as torque, volumetric efficiency fuel consumption rate, brake thermal efficiency, exhaust temperature, and carbon monoxide and hydrocarbon emissions were measured and analyzed under various levels of engine speed and compression ratio. The results were summarized as follows. 1. It showed that forque of LPG engine was 41% lower than that of kerosene engine with the same compression ratio, but LPG engine with compression ratio of 8.5 it was showed similar torque level to kerosene engine with compression ratio of 4.5. 2. Fuel consumption of LPG engine was reduced by about 5.1% and thermal efficiency was improved by about 2% compared with kerosene engine with the same compression ratio. With the incrasing of compression ratio in LPG engine fuel consumption rate decreased and thermal efficiency increased. 3. Exhaust temperature of LPG engine was about 15% lower than that of kerosene engine. Concenrations of emissions from LPG engine was affected insignificantly by compression ratios, and carbon monoxide emissions from the LPG engine was not affected by engine speed so much. The carbon monoxide and hydrocarbon emissions from LPG engine were about 94% and 66% lower than those of kerosene engine, respectively.

  • PDF

포트 마스킹이 엔진의 배기에 미치는 영향 (Effects of Port Masking on Emission)

  • 김형식;박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

DS-TH UWB 시스템의 전력 스펙트럼 분석 (Analysis on the Power Spectrum of Direct Sequence-Time Hopping UltraWideBand System)

  • 김영철;이정석;강덕근
    • 디지털콘텐츠학회 논문지
    • /
    • 제5권3호
    • /
    • pp.219-224
    • /
    • 2004
  • 본 논문은 직접확산시간도약 초광대역 (DS-TH UWB) 시스템에 관하여 전력 스펙트럼 특성을 연구하였다. DS-TH UWB 시스템은 정보 신호를 의사잡음 부호와 연산하여 불규칙한 패턴의 펄스열로 구성하고 이를 펄스열의 칩으로 묶어 복수개의 그룹으로 만들었으며 각 그룹을 특정 값으로 매핑하게 한다. 이 특정 값과 매핑 장치 내의 Lookup Table로부터 타이밍 정보를 비교하여 (+)/(-) 펄스를 프레임 내에 위치시키게 된다. 결과적으로 기존의 시스템에서 발생하는 에너지 스파크 현상을 매우 효과적으로 억압할 수 있었으며, 본 논문에서 제안하는 DS-TH UWB 시스템은 고속의 시간도약 부호를 이용하지 않고서도 평활한 전력 스펙트럼 특성을 형성할 수 있었다.

  • PDF

가솔린과 바이오 에탄올 혼합 연료의 엔진 및 차량 모드 주행시의 입자상 물질 배출 특성 (Particle emission characteristics of gasoline and bio ethanol blend in the engine and vehicle mode test)

  • 고아현;이형민;최관희;박심수;이영재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3102-3107
    • /
    • 2008
  • This paper was focused on the particulate matter (PM) on the gasoline and bio ethanol. Bio ethanol as a clean fuel is considered one of the alternative fuels that decreased the PM emission from the vehicle. Particle formation in SI engine was depended on the fuel and engine operating condition. In this paper, Particle number concentration behaviors were analyzed by DMS500 (Differential Mobility Spectrometer) and CPC (Condensation Particle Counter) instrument which was recommended by PMP (Particle Measurement Programme). Particle emissions were measured with various engine operating variables such as air excess ratio ($\lambda$), spark timing and intake valve opening (IVO) at part load condition. In vehicle test, the number of particulate matter was analyzed with golden particle measurement system, which was consist of CVS (Constant Volume Sampler), particle number counter and particle number diluter.

  • PDF

흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

바이오가스의 성분 변화가 엔진 성능에 주는 영향 (Effects of Biogas Composition Variations on Engine Performance)

  • 박승현;박철웅;김영민;이선엽;김창기
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.25-30
    • /
    • 2011
  • 바이오가스는 Biomass, 유기성 폐기물 등의 혐기소화 공정을 통해 얻을 수 있는 대표적인 신재생연료로 저발열량에도 불구하고 탄소중립적인 특성이 있기 때문에 이를 엔진에 적용하여 에너지를 생산하고자 하는 노력이 계속되어왔다. 바이오가스는 원료의 종류 및 혐기소화 공정 조건에 따라 그 연료 조성이 달라질 수 있는데, 이러한 조성 변화는 엔진 성능에 큰 영향을 미칠 수 있기 때문에 이에 대한 연구가 필요한 실정이다. 따라서 이번 연구에서는 다양한 발열량을 갖는 바이오가스를 연료 내 불활성가스 비율을 변화시켜 모사하고 이를 이용하여 바이오가스 내 불활성가스 비율의 변화, 즉 발열량의 변화가 엔진 성능 및 배기 특성에 주는 영향을 파악하였다. 실험결과로 각 불활성가스 함량에 따른 최적 점화시기를 결정하였으며, 발열량 변화가 엔진 출력, 효율, 배기 성능에 미치는 영향을 제시하였다.

HCNG 엔진의 NOx 배출특성에 관한 연구 (A Study on the NOx Emission Characteristics of HCNG Engine)

  • 박철웅;김창기;최영;원상연;이선엽
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.78-83
    • /
    • 2011
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. Although the high octane value of natural gas increases engine output and efficiency due to the high compression ratio, this fuel is prone to such difficulties as a narrow limit of inflammability and a slow combustion speed in the lean burn operation domain, leading to unstable combustion and higher emissions of harmful exhaust gases. Hydrogen blended with natural gas can extend the lean burn limit while maintaining stable, efficient combustion and achieving lower NOx, hydrocarbon and green house gas emissions. In this study, the effect of hydrogen addition on an engine performance and NOx emission characteristics was investigated in a heavy duty natural gas engine. The results showed that thermal efficiency was increased and NOx emissions were reduced due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the retard of spark advance timing.