• Title/Summary/Keyword: Spar

Search Result 193, Processing Time 0.022 seconds

Design and Manufactures of Cyclocopter Composite Wing Blades (사이클로콥터의 복합재료 Wing blade 설계 및 제작)

  • 김승조;윤철용;백병주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.187-190
    • /
    • 2000
  • Cyclocopter is air vehicle to vertically take-off and land like a helicopter. This is an efficient and quiet means of being able to direct thrust compared to a helicopter. The rotor consists of several blades rotating about a horizontal axis perpendicular to the direction of normal flight. The direction of blade span is parallel to rotating axis and both end roots are connected to the hub to resist centrifugal force and to transmit the power. The pitch of the individual blades to the tangent of the circle of the blade's path is varied cyclically to gain thrust. In the paper, the design and manufactures of cyclocopter rotor blades are presented. Stress at the roots of cyclocopter blades is great due to centrifugal and aerodynamic forces and aeroelastic instabilities appear. The blades consist of main spar, front spar, polyurethan foam, weight, and skin and spars and skin are made of glass/epoxy composite.

  • PDF

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

The Floating Drilling, Production, Storage, and Offloading Vessel for the Large Deepwater Field Development

  • John Halkyard;Park, Guibog;Igor Prislin;Atle Steen;Phil Hawley
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • A new alternative for large deepwater field development is described. This "Oil Box" (aka "Box Spar") is a multifunction vessel capable of floating drilling, production, storage and offloading (FDPSO). It is distinguished from other Floating Production, Storage and Offloading (FPSO) vessels by its unique hull form and oil storage system. It's main advantages are flexibility derived from the floatover deck option, use of proven top tensioned riser technology, and motion characteristics which make it operable in a wide range of environmental conditions.

  • PDF

Study on High Aspect Ratio Wing and Optimization of Substructure Location by Using EDISON OPtimal Triangle membrane(Linear and Non-linear analysis) - Static (EDISON OPT 평면요소를 이용한 고 세장비 날개에 대한 선형, 비선형 비교연구 및 추가구조물 위치 최적화)

  • Lee, Da-Woon;Hong, Yoou-Pyo;Shin, Sang-Joon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.262-267
    • /
    • 2016
  • In this paper, to design Human Powered Aircraft(HPAC) with high aspect ratio wing which behave with large displacement under lift distribution causing a failure itself, then steel wire has been designed to prevent its failure. unit load method is used to calculate reaction force on wire and Optimal Triangle(OPT) membrane is employed to analyze its main wing spar with large displacement. EDISON CSD solver, linear static analysis and co-rotational nonlinear static anaysis both using OPT membrane produce behaviors of beam for each case of wire location about main wing spar, and aerodynamic coefficient also, by using aerodynamic analysis tool.

  • PDF

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

Numerical model of a tensioner system and riser guide

  • Huang, Han;Zhang, Jun;Zhu, Liyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-273
    • /
    • 2013
  • Top tensioned riser (TTR) is often used in a floating oil/gas production system deployed in deep water for oil/gas transport. This study focuses on the extension of the existing numerical code, known as CABLE3D, to allow for static and dynamic simulation of a TTR connected to a floating structure through a tensioner system or buoyancy can, and restrained by riser guides at different elevations. A tensioner system usually consists of three to six cylindrical tensioners. Although the stiffness of individual tensioner is assumed to be linear, the resultant stiffness of a tensioner system may be nonlinear. The vertical friction between a TTR and the hull at its riser guide is neglected assuming rollers are installed there. Near the water surface, a TTR is forced to move horizontally due to the motion of the upper deck of a floating structure as well as related riser guides. The extended CABLE3D is then integrated into a numerical code, known as COUPLE, for the simulation of the dynamic interaction among the hull of a floating structure, such as spar or TLP, its mooring system and riser system under the impact of wind, current and waves. To demonstrate the application of the extended CABLE3D and its integration with COUPLE, the numerical simulation is made for a truss spar under the impact of Hurricane "Ike". The mooring system of the spar consists of nine mooring lines and the riser system consists of six TTRs and two steel catenary risers (SCRs).

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA (유전자 알고리즘 PSGA를 이용한 복합재료 헬리콥터 블레이드 최적 구조설계)

  • Chang, Se Hoon;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.340-346
    • /
    • 2022
  • In this study, an optimal structural design of composite helicopter blades is performed using the genetic algorithm-based optimizer PSGA (Particle Swarm assisted Genetic Algorithm). The blade sections consist of the skin, spar, form, and balancing weight. The sectional geometries are generated using the B-spline curves while an opensource code Gmsh is used to discretize each material domain which is then analyzed by a finite element sectional analysis program Ksec2d. The HART II blade formed based on either C- or D-spar configuration is exploited to verify the cross-sectional design framework. A numerical simulation shows that each spar model reduces the blade mass by 7.39% and 6.65%, respectively, as compared with the baseline HART II blade case, while the shear center locations being remain close (within 5% chord) to the quarter chord line for both cases. The effectiveness of the present optimal structural design framework is demonstrated, which can readily be applied for the structural design of composite helicopter blades.

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.

Studios on the Synthetic Pheromones of Striped Rice Borer and Tortricid Insect Pests (이화명충과 과수잎말이나방류 해충의 합성 Pheromone에 관한 연구)

  • Song Y. H.;Song H. Y.;Kim H. K.;Chang Y. D.;Lippold P. C.
    • Korean journal of applied entomology
    • /
    • v.17 no.1 s.34
    • /
    • pp.41-47
    • /
    • 1978
  • Pheromones of several insect species were evaluated in a screening program in terms of their usefulness in pest forecasting and control in Korea. Species included striped rite borer (Chilo suppressalis) and tortricid moths, which attack deciduous fruit, and colding moth. The pheromone of striped rice borer was supplied through the courtesy of the Tropical Products Institute, London. Pheromones of other species were obtained from Cornell University and the Zoecon Corporation of Palo Alto, California. 'rho results of this experiment were as follows: 1. Live traps containing virgin striped rice borer female moths were more effective in attracting male moths than were the pheromone traps. 2. Since the effectiveness of the striped rice borer pheromone decreased dramatically with time, it was difficult to estimate the peak tine of the borer emergence. 3. The primary species trapped in deciduous fruit orchards was the oriental fruit moth, Grapholitha molesta. The traps were baited with the phermones, OFM and LAW. 4. Several moth species were trapped with OBLR. RBLR. SPAR and ArcM phermones but few were trapped with the remaining eight tortricid pheromones. 5. The following tortricid pheromones might be useful for forecasting the species given: OFM, LAW : Grapholitha molesta OBLR : Archips breviprecanus OBLH, RBLR, ArcM : Archippus coreensis Archips fuscocupreanus Hoshinoa longicellana SPAR, TBM ; Phyroderces sp.

  • PDF