• 제목/요약/키워드: Spanwise Oscillation

검색결과 8건 처리시간 0.024초

횡 방향 진동하는 전자기력에 대한 공간 발달하는 난류 경계층의 반응 (Response of Spatially Developing Turbulent Boundary Layer to Spanwise Oscillating Electromagnetic Force)

  • 이중호;성형진
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1189-1198
    • /
    • 2005
  • Direct numerical simulations were performed to investigate the physics of a spatially developing turbulent boundary layer flow subjected to spanwise oscillating electromagnetic forces in the near wall region. A fully implicit fractional step method was employed to simulate the flow. The mean flow properties and the Reynolds stresses were obtained to analyze the near-wall turbulent structure. It is found that skin friction and turbulent kinetic energy can be reduced by the electromagnetic forces. The decrease in production is responsible fur the reduction of turbulent kinetic energy. Instantaneous flow visualization techniques were used to observe the response of streamwise vortices and streak structures to spanwise oscillating forces. The near-wall vortical structures are affected by spanwise oscillating electromagnetic forces. Following the stopping of the electromagnetic force, the flow eventually relaxes back to a two-dimensional equilibrium boundary layer.

3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수;최홍일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

공동의 폭 변화에 따른 3차원 초음속 공동 유동연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

고속 PIV계측에 의한 실린더 근접후류 공진 유동 가시화 (Visualization of Vortex Lock-on to Oscillatory Incident Flow in the Cylinder Wake Using Time-Resolved PIV)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1353-1361
    • /
    • 2001
  • Vortex lock-on or resonance behind a circular cylinder is visualized using a time-resolved PW when a single frequency oscillation is superimposed on the mean incident velocity. For vector processing, a cross-correlation algorithm in conjunction with a recursive correlation and interrogation window shifting techniques is used. Measurements are made of the Karmas and streamwise vertices in the wake-transition regime at Reynolds lumber 360. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the Karman vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwiee vortices, which lead? to a strong three-dimensional motion.

  • PDF

Effect of lock-on frequency on vortex shedding in the cylinder wake

  • Yoo Jung Yul;Sung Jaeyong;Kim Wontae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.86-99
    • /
    • 2001
  • Vortex lock-on or resonance in the flow behind a circular cylinder is investigated from a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K\acute{a}rm\acute{a}n$ and streamwise vortices in the wake-transition regime at the Reynolds number 360. Streamwise vortices at the lock-on and natural shedding states are observed, as well as the changes in the wake region with the change of the shedding frequency of lock-on state. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the $K\acute{a}rm\acute{a}n$ vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwise vortices, which leads to a strong three-dimensional motion. Recirculation and vortex formation region at the lock-on state is reduced as the oscillating frequency is increased. By comparing the Reynolds stresses at the lock-on and natural shedding states, $\bar{u'u'}\;and \;\bar{u'u'}$ at the lock-on state are concentrated on the shear layer around the cylinder. The $\bar{u'u'}\;at\;f_o/f_n=2.0$ has a large value near the centerline, compared with that of other cases. Considering the traces of maximum of u', in the wake region near the cylinder, wake width at the lock-on state is wider than that at the natural shedding state.

  • PDF

헬름홀츠 공진에서 톱니 효과에 대한 수치적 연구 (Numerical Investigation of Serration Effect on the Helmholtz Resonance)

  • 이승수;전민우;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.13-19
    • /
    • 2016
  • The flow-excited Helmholtz resonance phenomenon was investigated numerically using Reynolds averaged Navier-Stokes approach. The fundamental cause of the Helmholtz resonance phenomenon is known as shedding of a single discrete vortex from orifice edge that travels during one period of the oscillation. In this study, serrated deflector, which is biomimetic design of the owl's feather, is used to split a single vortex into small vortices. Rectangular deflector and serrated deflector are compared with numerical results of pressure and streamline inside the cavity. Consequently, the serration breaks the shedding period of vortex core and eliminates the resonance. Also, it changes the flow pattern in according to the location of different serration height. By making inflows and outflows occur simultaneously in spanwise direction in the cavity, the period of Helmholtz resonance disappears. Comparing between rectangular deflector and serrated deflector, the serrated deflector can deal with the Helmholtz resonance more effectively.

Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity

  • Omer, Ahmed;Mohany, Atef;Hassan, Marwan
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.91-107
    • /
    • 2016
  • Flow-excited acoustic resonance in ducted cavities can produce high levels of acoustic pressure that may lead to severe damage. This occurs when the flow instability over the cavity mouth, which is created by the free shear layer separation at the upstream edge, is coupled with one of the acoustic modes in the accommodating enclosure. Acoustic resonance can cause high amplitude fluctuating acoustic loads in and near the cavity. Such acoustic loads could cause damage in sensitive applications such as aircraft weapon bays. Therefore, the suppression and mitigation of these resonances are very important. Much of the work done in the past focused on the fluid-dynamic oscillation mechanism or suppressing the resonance by altering the edge condition at the shear layer separation. However, the effect of the downstream edge has received much less attention. This paper considers the effect of the impingement edge geometry on the acoustic resonance excitation and Strouhal number values of the flow instabilities in a ducted shallow cavity with an aspect ratio of 1.0. Several edges, including chamfered edges with different angles and round edges with different radii, were investigated. In addition, some downstream edges that have never been studied before, such as saw-tooth edges, spanwise cylinders, higher and lower steps, and straight and delta spoilers, are investigated. The experiments are conducted in an open-loop wind tunnel that can generate flows with a Mach number up to 0.45. The study shows that when some edge geometries, such as lower steps, chamfered, round, and saw-tooth edges, are installed downstream, they demonstrate a promising reduction in the acoustic resonance. On the other hand, higher steps and straight spoilers resulted in intensifying the acoustic resonance. In addition, the effect of edge geometry on the Strouhal number is presented.