• Title/Summary/Keyword: Span length

Search Result 798, Processing Time 0.024 seconds

Potentially-innovative options in designing suspension bridges with railway crossing

  • F. Casciati;S. Casciati
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • Both the first author and the company of the second author were involved, directly or indirectly, in the design stage of a permanent link between the bottom of the Italian peninsula and the nearby Sicily island. This ambitious project was left in stand-by from 2013 to 2023. The current political revival originates some thoughts on the updated desired performance of suspension bridges, without any immediate reference to that specific crossing. It is simply regarded as a starting point. After an update on recent worldwide realizations, the authors focus their attention on four basic aspects: the span length, the girder scheme, the foundation technology and the bridge runability. Eventually, structural control and monitoring aspects are discussed as potentially innovative options in designing suspension bridges with railway crossing.

The Effects of Korean Lexical Characteristics on Memory Span (한국어 어휘특성들이 기억폭에 미치는 효과)

  • Park Tae-Jin;Park Sun-Hee;Kim Tae-Ho
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.1
    • /
    • pp.15-27
    • /
    • 2006
  • The effects of the number of Hangul syllable, the nunber/location of batchim in a Hangul word, and compound/noncompound Hangul word on memory span were examined. The results were that (1) the more syllables a word had, the lower us memory span was, (2) the more batchims a two-syllable word had, the lower its memory span was (Korean batchim effect on memory span), (3) noncompound word had higher memory span than compound word. The reading speed of above mentioned words was measured and the results were that (1) the more syllables a word had, the slower its reading speed was, (2) but the reading speed of a two-syllable word was forest when it had a batchim on second syllable than when it had no batchim or had a batchim on first syllable or batchims on both syllables (Korean ending batchim effect on reading speed), (3) noncompound word was read faster thu compound word. Korean ending batchim effect on reading speed was not compatible with the explanation by articulatory loop bur compatible with the explanation by visual cache where the orthographic information was represented. The results suggest that memory span was influenced nor only by phonological information but also by orthographic information.

  • PDF

Comparison of Efficiency by Span in Various Railway Bridge Types (철도교량형식의 경간에 따른 효율성 비교연구)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • The superstructure type of the railway bridge in our country, is mainly classified into the box girder and the I-type girder. The box girder is widely used in the high speed railway bridge because of the safety due to dynamic behavior. The I-type girder is used in the conventional railway bridge, and is also divided into the general type and the composite type, and the newly modified types have been developed. According to the current railway bridge design code, the girder design by the span length in various railway bridge types are performed in this study. The suitable girder height by the span length are analyzed, and the comparative analysis of the structural efficiency and the economical efficiency is carried out. From this study, the composite type girder is appeared the good result in respect of the structural efficiency. However, in the economical aspect, the general I-type girder is required less cost than the other types.

Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels (강판벽이 설치된 건물의 연쇄붕괴 저항성능)

  • Lee, Ha-Na;Kwon, Kwang-Ho;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • In this study the progressive collapse behavior of a moment frame with infill steel panels is evaluated using nonlinear static pushdown analysis. The analysis model is a two story two span structure designed only for gravity load, and the load-displacement relationship is obtained with the center column removed. To obtain local stress and strain as well as the global structural behavior, finite element analysis is conducted using ABACUS. Through the analysis the effect of the span length and the thickness of the steel plate on the progressive collapse behavior of the structure is investigated, and the effect of the dividing the infill panel using stud columns is also studied. According to the analysis results, the thickness of the panels required to prevent progressive collapse increases as the span length increases, and as the number of panel division increases the progressive collapse resisting capacity increases slightly but the effect is not significant. It is also observed that when the infill panel is installed in only a part of the span the progressive collapse resisting capacity is somewhat increased.

Parameter Analysis for Design of Concrete-Steel Hybrid Extradosed Bridge (콘크리트-강 복합 엑스트라도즈드교의 설계변수 분석)

  • Lho, Byeong Cheol;Lee, Yong Jin;Choi, Kyu Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.100-109
    • /
    • 2011
  • Recently, the concrete-steel hybrid extradosed bridge has been proposed as alternative bridge type at long span site. The hybrid extradosed bridge adopts light orthogonal deck girder instead of heavy concrete deck girder at the center span of bridge, and it enables to construct long-span bridge. And also, for this bridge type the decrease of self-weight of girder enables to reduce girder depth and side span length of extradosed bridge, so its type has more efficient structural behavior and makes it possible to perform optimal bridge design. Therefore, it is very important to set up the procedure and parameters of optimal design for concrete-steel hybrid extradosed bridge. In this study, the effects of design parameters (the variation of pylon height, bridge deck depth and orthogonal deck girder length) are discussed. And numerical analysis and sensitivity analysis are carried out according to these parameters. And design weight values about these parameters are quantitatively suggested to reflect characteristics of concrete-steel hybrid bridge.

Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with Path-Averaged Intensity Approximation Mid-Span Spectral Inversion (경로 평균 강도 근사 기법의 MSSI를 채택한 WDM 시스템에서 HNL-DSF를 갖는 광대역 광 위상 공액기)

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.14-21
    • /
    • 2003
  • We investigated the optimum pump light power compensating distorted WDM signal due to both chromatic dispersion and self phase modulation (SPM). The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system with path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and the excellent compensation is obtained when the pump light power of HNL-DSF OPC was selected to equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length. By this approach, it is verified the possibility to realize a long-haul high capacities WDM system by using PAIA MSSI compensation method, which have HNL-DSF OPC with optimal pump light power depending on transmission length.

  • PDF

Stability analysis of steel cable-stayed bridges

  • Tang, Chia-Chih;Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.35-48
    • /
    • 2001
  • The objective of this study is to investigate the stability behavior of steel cable-stayed bridges by comparing the buckling loads obtained by means of finite element methods with eigen-solver. In recent days, cable-stayed bridges dramatically attract engineers' attention due to their structural characteristics and aesthetics. They require a number of design parameters and present a high degree of static indetermination, especially for long span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads due to the individual nonlinearity of substructures such as the pylons, stay cables, and bridge deck, and their interactions. The geometric nonlinearities arise mainly from large displacements of cables. Strong axial and lateral forces acting on the bridge deck and pylons cause structural nonlinear behaviors. The interaction is among the substructures. In this paper, a typical three-span steel cable-stayed bridge with a variety of design parameters has been investigated. The numerical results indicate that the design parameters such as the ratio of $L_1/L$ and $I_p/I_b$ are important for the structural behavior, where $L_1$ is the main span length, L is the total span length of the bridge, $I_p$ is the moment of inertia of the pylon, and $I_b$ is the moment of inertia of the bridge deck. When the ratio $I_p/I_b$ increases, the critical load decreases due to the lack of interaction among substructures. Cable arrangements and the height of pylon are another important factors for this type of bridge in buckling analysis. According to numerical results, the bridges supported by a pylon with harp-type cable arrangement have higher critical loads than the bridges supported by a pylon with fan-type cable arrangement. On contrary, the shape of the pylon does not significantly affect the critical load of this type of bridge. All numerical results have been non-dimensionalized and presented in both tabular and graphical forms.

Effect of posterior span length on the trueness and precision of 3 intraoral digital scanners: A comparative 3-dimensional in vitro study

  • Fattouh, Mohamed;Kenawi, Laila Mohamed Mohamed;Fattouh, Hesham
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • Purpose: This in vitro study measured and compared 3 intraoral scanners' accuracy (trueness and precision) with different span lengths. Materials and Methods: Three master casts were prepared to simulate 3 different span lengths (fixed partial dentures with 3, 4, and 5 units). Each master cast was scanned once with an E3 lab scanner and 10 times with each of the 3 intraoral scanners (Trios 3, Planmeca Emerald, and Primescan AC). Data were stored as Standard Tessellation Language (STL) files. The differences between measurements were compared 3-dimensionally using metrology software. Data were analyzed using 1-way analysis of variance with post hoc analysis by the Tukey honest significant difference test for trueness and precision. Statistical significance was set at P<0.05. Results: A statistically significant difference was found between the 3 intraoral scanners in trueness and precision (P<0.05). Primescan AC showed the lowest trueness and precision values(36.8 ㎛ and 42.0 ㎛;(39.4 ㎛ and 51.2 ㎛; and 54.9 ㎛ and 52.7 ㎛) followed by Trios 3 (38.9 ㎛ and 53.5 ㎛; 49.9 ㎛ and 59.1 ㎛; and 58.1 ㎛ and 64.5 ㎛) and Planmeca Emerald (60.4 ㎛ and 63.6 ㎛; 61.3 ㎛ and 69.0 ㎛; and 70.8 ㎛ and 74.3 ㎛) for the 3-unit, 4-unit, and 5-unit fixed partial dentures, respectively. Conclusion: Primescan AC had the best trueness and precision, followed by Trios 3 and Planmeca Emerald. Increasing span length reduced the trueness and precession of the 3 scanners; however, their values were within the accepted successful ranges.

Reading Speed Comparison: Paragraphs in Digital and Print Media (디지털 매체와 인쇄 매체에서의 문단 읽기 속도 비교)

  • Ko Eun Lee
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 2023
  • This study aimed to examine whether there are differences in reading performance between digital and print media by measuring reading speed of paragraphs on print materials and tablet PC. To investigate whether the physical characteristics of the media influence reading performance, the format of text was kept as similar as possible between print and digital media. We also compared conditions in which paragraphs consisted of either long or short sentences to explore if there were differential effects on reading performance based on sentence length across different media. Additionally, reading speed was analyzed based on reading span to investigate whether there were differences in reading performance according to participants' working memory capacity. As a result, reading speed was faster when reading print media compared to digital media. However, there was no difference in reading speed based on the length of sentences composing the paragraphs. Participants with a higher reading span exhibited faster reading speed compared to participants with a lower reading span. Moreover, participants with a higher reading span read paragraphs composed of long sentences faster on print media than on digital media. The findings of this study suggest that visual fatigue induced by tablet PCs and participants' working memory capacity may impact reading speed.

Arch Action in Reinforced Concrete Beams (철근콘크리트보에서의 아취현상에 대한 연구)

  • Kim, Woo;Kim, Dae-Joong;Mo, Gui-Suk;Ko, Kwang-Il
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 1994
  • Sixteen reinforced concrete beams were tested statically up to failure to investigate the arch action. Major variables were the shear span to depth ratio, steel ratio and existence of stirrups.The arch action in reinforced concrete beams started when flexural cracks appeared at the center of the span. Due to the reduction of internal moment arm length by the development of arch action, the measured steel tension was significantly higher than the calculated. As the shear span to depth ratio arid steel ratio decrease, the arch action in reinforced concrete eams increases. Over the entire length the force in the steel of no web reinforced beams having smaller a /d ratio than 3 was constant because the beams acted as a tied arch.