• Title/Summary/Keyword: Spalart-Allmaras Turbulence Model

Search Result 59, Processing Time 0.022 seconds

Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method (가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

Aerodynamic Calculations in Hover of KUH Rotor Blade (한국형 기동헬기 블레이드의 제자리 비행 공력 해석)

  • Kang, Hee-Jung;Kim, Seung-Ho;Jung, Mun-Seung;Lee, Hee-Dong;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

A Study of Unsteady Aerodynamic Characteristics of an Accelerating Aerofoil (가속익의 비정상 공력특성에 관한 연구)

  • Lee, Young-Ki;Kim, Heuy-Dong;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.556-561
    • /
    • 2003
  • Flight bodies are subject to highly unstable and severe flow conditions during taking-off and landing periods. In this situation, the flight bodies essentially experience accelerating or decelerating flows, and the aerodynamic characteristics can be completely different from those of steady flows. In the present study, unsteady aerodynamic characteristics of an aerofoil accelerating at subsonic speeds are investigated using a computational method. Two-dimensional, unsteady, compressible Navier-Stokes simulations are conducted with a one-equation turbulence model, Spalart-Allmaras, and a fully implicit finite volume scheme. An acceleration factor is defined to specify the unsteady aerodynamics of the aerofoil. The results show that the acceleration of the subsonic aerofoil generally leads to a variation in aerodynamic characteristics and it is more significant at angles of attack.

  • PDF

Aerodynamic Design of the KARI Mid-sized Aerostat

  • Huh, Lynn;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Aerodynamic shape design of the Mid-sized Aerostat was performed with computational fluid dynamics. Design procedure included determination of hull volume and length, hull shape, tailfin configuration with anhedral and location, tailfin section. For aerodynamic analysis, three dimensional Navier-Stokes equations were applied with Spalart-Allmaras turbulence model. During design procedure, static moment derivatives were mainly considered for the stability of aerostat and structural limitations were also considered for practical application of the designed shape. Aerodynamic analysis of the designed aerostat was carried out and aerodynamic characteristics were compared with those of the TCOM 71m aerostat, one of the most successful commercial aerostats. It was found that the designed KARI Mid-sized Aerostat had better stability characteristics compared to the TCOM 71m aerostat.

A Study of Supersonic Flow Around Lateral Jet Controlled Missile (측 추력 제어 미사일 주위의 초음속 유동현상 연구)

  • Min Byung-Young;Lee Jae-Woo;Byun Yung-Hwan;Hyun Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.28-34
    • /
    • 2002
  • A computational study of supersonic flow around lateral jet controlled missile has been performed. For this study, three dimensional Navier-Stokes code(AADL3D) has been developed. Spalart-Allmaras one equation turbulence model has been implemented on the AADL3D code for relatively rapid computational time. For the validation of developed code, AADL3D, pressure distributions on an ogive-cylinder body has been compared with experimental data. Also, the shock structure of sonic jet on the flat plate in the supersonic flow field has been compared with experimental flow visualization result to see the analysis capability of freestream-jet interaction case. A case study has been performed through comparing the normal force coefficient and the moment coefficient of missile body for several jet flow conditions. Current results will be used to the optimum design of a lateral jet controlled missile.

  • PDF

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.78-81
    • /
    • 2008
  • A numerical study of the unsteady flow in an over-expanded thrust optimized contour and compressed truncated perfect rocket nozzle is carried out in present paper. These rocket nozzles are subject to flow separation in transient phase at engine start-up and/or engine shut-down. The separation flow structures at different pressure ratios are observed. The start-up process exhibits two different shock structures such as FSS (Free Shock Separation) and RSS (Restricted Shock Separation). For a range of pressure ratios, hysteresis phenomenon occurs between these two separation patterns. A three-dimension compressible Navier-Stokes solver is used for the present study. One equation Spalart-Allmaras turbulence model is selected. The computed nozzle wall pressures show a good agreement with the experimental measurements. Present results have shown that present code can be used for the analysis of the transient flows in nozzle.

  • PDF

CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

PERFORMANCE ASSESSMENT OF THE RANS TURBULENCE MODELS IN PREDICTION OF AERODYNAMIC NOISE FOR AIR-CONDITIONER INDOOR UNIT (에어컨 실내기의 공력소음 예측을 위한 RANS 난류모델의 성능 평가)

  • Min, Y.H.;Kang, S.;Hur, N.;Lee, C.;Park, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.81-86
    • /
    • 2012
  • The objective of the present study is to investigate the effects of various turbulence models on the aerodynamic noise of an air-conditioner (AC) indoor unit. The results from URANS (unsteady Reynolds-averaged Navier-Stokes) simulations with the standard k-$\varepsilon$, k-$\omega$ shear stress transport (SST) and Spalart-Allmaras (S-A) turbulence models were analyzed and compared with the noise data from the experiments. The frequency spectra of the far-field acoustic pressure were computed using the Farrasat equation derived from the Ffowcs Williams-Hawkings (FW-H) equation based on the acoustic analogy model. Two fixed fan casings and the rotating cross-flow fan were used as the source surfaces of the dipole noise in the Farrasat equation. The result with the standard k-$\epsilon$ model showed a much better agreement with the experimental data compared to the k-w SST and S-A models. The differences in the pressure spectra from the different turbulence models were discussed based on the instantaneous vorticity fields. It was found that the over-estimated power spectra with the k-w SST and S-A models are related to the emphasized small-scale vortices produced with these models.

Optimization of Flap Shape and Position for Two-dimensional High Lift Device (2차원 고양력장치의 플랩 형상 및 위치 최적화)

  • Park, Youngmin;Kang, Hyoungmin;Chung, Jindeog;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.