• 제목/요약/키워드: Spacer shape

Search Result 117, Processing Time 0.033 seconds

A Study on the Electric Field Analyses and Improvement of Insulation Characteristics on the Ribbed Spaced for GIS (GIS 립 스페이서에 대한 전계해석 및 절연특성 개선에 관한 연구)

  • 류성식;최영찬;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • This paper analyzed the effect of ribs on the breakdown characteristics when a metallic particle attaches on the various spot of GIS spacer, using electric field analysis. Also, it was compared with the experimental result of breakdown voltage characteristics for the spacer with a metallic particle on its various spot and with the shape, the length, and the thickness of the ribs varying. The results of electric field analysis show that the electric field concentration of the rib is more weakened than other parts and therefore it restrains the proceeding of streamer, which occurs at the breakdown. And it is verified through experiments that the breakdown voltage of the spacer with rib is higher than that of the spacer without rib. The breakdown characteristics depend on the shape, the length, and the thickness of the rib as well. Also, it is confirmed by the electric field analysis and the experimental results that the electric breakdown characteristics could be improved by rounding the rib edge.

Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material (3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.

Free Vibration Characteristics of 5 × 5 Spacer Grid Assembly Supporting the PWR Fuel Rod (경수로 연료봉을 지지하는 5×5 지지격자체의 자유진동특성)

  • 강흥석;윤경호;송기남;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.512-519
    • /
    • 2004
  • This paper described the free vibration characteristics of Optimized H Type (OHT) spacer grids (SG) supporting the PWR fuel rod. The vibration test and the finite element (FE) analysis are performed under the free boundary condition and the clamped at two points (or three points) in the bottom which is the same one as the experimental condition for the dummy rod continuously supported by spacer grids. A modal test is conducted by the impulse excitation method using an impulse hammer and an accelerometer, and the TDAS module of the I-DEAS software is used to acquire and analyze the sensor signals. The softwares related to the FE analysis are the I-DEAS for the geometrical shape modeling and meshing, and the ABAQUS for solving. The fundamental frequency of the OHT SG by experiment under a clamped condition at two points is 175.18 Hz, and shows a bending mode. We think there is no resonance between the fuel rod and the SG because the SG's frequency is higher than that of the fuel rod existing in the range from 30 to 120 Hz. The fundamental frequency of the SG under the free boundary condition is 349.2 Hz showing a bending mode, and the results between the test and the analysis have a good agreement with maximum 7 % in error It is also found that the FE analysis model of the OHT SGs to analyze an impact, a buckling and vibration et al. has been generated with reliability.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

Shape Optimization of LMR Fuel Assembly Using Radial Basis Neural Network Technique (신경회로망 기법을 사용한 액체금속원자로 봉다발의 형상최적화)

  • Raza, Wasim;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.663-671
    • /
    • 2007
  • In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. Sequential Quadratic Programming is used to search the optimal point from the constructed surrogate. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling. The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor.

Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology (호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계)

  • Lee Jae-Jun;Song Ki-Nam;Park Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

A 3-dimensional Printed Molding Technique for the Management of Humeral Head Osteomyelitis

  • Moon, Young Lae;dev Bhardwaj, Harvinder;Kim, Boseon;Ryu, Kang Hyeon
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.1
    • /
    • pp.46-48
    • /
    • 2017
  • There are many methods of making cement spacer in patients who require a two-staged operation for humeral head osteomyelitis. However, limitation of motion after the first surgery-due to inadequate size and insufficient intra-articular space for second surgery-remain to be an issue. To mitigate this issue, we made a cement spacer with the same size and shape of the patient humeral head. Four patients with humeral head osteomyelitis were enrolled in this study. To make the cement spacer, we used the Mimics program, and designed the molding box by a reverse engineering technique. We evaluated the range of motion and pain using a Constant score. The mean abduction was $50^{\circ}$($40^{\circ}-60^{\circ}$), forward flexion was $50^{\circ}$ ($30^{\circ}-70^{\circ}$), and average Constant score was 47.75 (44-52). Three-dimensional printed molding technique is one of the effective methods for humeral head osteomyelitis allowing for daily activities prior to the second surgery.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.