• Title/Summary/Keyword: Spacecrafts

Search Result 62, Processing Time 0.017 seconds

KITSAT-1/2 ANALOG SUN SENSORS-IN-ORBIT RESULTS (우리별 1, 2호 아날로그 태양 감지기의 궤도상 운용결과)

  • 장현석;김병진;임광수;성단근;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • This paper briefly describes the KITSAT-1 and KITSAT-2 spacecrafts and presents the functions, calibration procedures and in-orbit results of the KITSAT-2 analog sun sensors have been flown as an experimental payload for the future mission. We have two constraints in their design: small size and very low power consumption due to the tight mass and power budget of the spacecraft. Two one-dimensional analog sun sensors are mounted on the top facet of the KITSAT-2 spaceraft. Each has $\pm$60 degrees of view angle and they cover 210 degree field of view in total as the 30 degree view angles are overlapped. Only the relative sun angle around the Z-axis (yaw-axis) and the spin rate of the spacecraft can be achieved as the one dimensional sun sensors are used and they are aligned with the Z-axis. The calibration formulae are obtained using the fifth order line fitting algorithm for each sun sensor on the ground and they are applied to the obtained in-orbit data. ASS-1 with silicon solar cells has maximum error of 1.5 degree and ASS-2 with silicon photocells manufactured at KAIST has maximum error of 0.5 degree except near 0 degree of sun ray incident anagle where random reflection of incident sun ray is maximum in orbit. The results are presented in chapter 4. The performance of each sun sensor and the possible mounting errors are stated in chapter 5.

  • PDF

MODIS-estimated Microphysical Properties of Clouds Developed in the Presence of Biomass Burning Aerosols (MODIS 관측자료를 이용한 러시아 산불 영향 하에 발달한 구름의 미세 물리적 특성 연구)

  • Kim, Shin-Young;Sohn, Byung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.289-298
    • /
    • 2008
  • An algorithm was developed to retrieve both cloud optical thickness and effective particle radius considered the aerosol effect on clouds. This study apply the algorithm of Nakajima and Nakajima (1995) that is used to retrieve cloud optical thickness and effective particle radius from visible, near infrared satellite spectral measurements. To retrieve cloud properties, Look-up table (LUT) was made under different atmospheric conditions by using a radiative transfer model. Especially the vertical distribution of aerosol is based on a tropospheric aerosol profile in radiative transfer model. In the case study, we selected the extensive forest fire occurred in Russia in May 2003. The aerosol released from this fire may be transported to Korea. Cloud properties obtained from these distinct atmospheric situations are analysed in terms of their possible changes due to the interactions of the clouds with the aerosol particle plumes. Cloud properties over the East sea at this time was retrieved using new algorithm. The algorithm is applied to measurements from the MODerate Resolution Imaging Spectrometer (MODIS) onboard the Terra spacecrafts. As a result, cloud effective particle radius was decreased and cloud optical thickness was increased during aerosol event. Specially, cloud effective particle radius is hardly greater than $20{\mu}m$ when aerosol particles were present over the East Sea. Clouds developing in the aerosol event tend to have more numerous but smaller droplets.